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Abstract
A preferred deal is a special contract for selling im-
pressions of display ad inventory. By accepting a
deal, a buyer agrees to buy a minimum amount of
impressions at a fixed price per impression, and is
granted priority access to the impressions before
they are sent to an open auction on an ad exchange.
We consider the problem of designing preferred
deals (inventory, price, quantity) in the presence of
general convex constraints, including budget con-
straints, and propose an approximation algorithm
to maximize the revenue obtained from the deals.
We then evaluate our algorithm using auction data
from a major advertising exchange and our empiri-
cal results show that the algorithm achieves around
95% of the optimal revenue.

1 Introduction
Display advertising is the practice of placing text, banner,
or video ads on publisher websites for the purpose of rais-
ing brand awareness via ad views, known as impressions.
The display advertising industry is a major source of revenue
for online publishers and Internet companies. In 2017, the
revenue of this market exceeded $27.5 billion for the U.S.
alone [PwC, 2018]. Traditionally, display advertising has
been mainly sold via reservation contracts or real-time bid-
ding. In a reservation contract, the publisher buys a fixed
amount of impressions on a segment of a publisher’s in-
ventory, over some amount of time (e.g., one month), and
the publisher commits to sending the advertiser the impres-
sions [Feige et al., 2008]. In real-time bidding, advertisers
bid through an ad exchange to appear on the publisher’s web-
site as the impressions arrive. Recently, an intermediate form
of contract known as a preferred deal has grown in popular-
ity [Digiday, 2018]. Under a preferred deal, the advertiser and
the publisher agree on a fixed impression price and quantity
(as in a reservation), but the advertiser is now given priority
access to choose among impressions in real time. Impressions
that the advertiser declines to buy can be sent on to other pre-
ferred deals with lower priority, or to an ad exchange.

Mirrokni and Nazerzadeh [2017] recently initiated a formal
study of preferred deals. They design an approximation algo-
rithm, called the auction-adjusted greedy algorithm (AAG),

for the problem of designing preferred deals for advertisers
based on their historical bids on an ad exchange, in order to
optimize for revenue. The idea is that the advertisers’ bids
on the exchange (normally in second-price auctions) provide
information about their distributions of value for different im-
pressions, and this information can be used to construct and
optimize deals going forward.

In practice, advertisers typically have strict budget limits
on the amount they are able to spend on various parts of their
marketing campaigns, and possibly other constraints such as
volume constraints on the number of impressions from differ-
ent subcategories of inventory (e.g., to ensure a diversity of
impressions). In this paper, we design an approximation al-
gorithm for optimizing revenue through preferred deals in the
presence of budget and general convex constraints. To do so,
we cast the AAG algorithm into a more general algorithmic
framework which takes in an oracle that allocates impressions
to optimize welfare, and results in a constant-factor approxi-
mation algorithm for the problem of optimal-revenue deal de-
sign. By using a constraint-aware social welfare oracle, we
obtain constant-factor approximations in settings where buyer
valuations are independent or additively correlated, where the
constraint-aware social welfare is the social welfare respect-
ing all constraints. For arbitrary correlation structures, we
prove a negative result showing that no constant-factor ap-
proximation is possible.

To efficiently implement the social welfare oracle in prac-
tice, we use a reduction by Cai et al. [2012] from ex-post to
interim impression allocation rules, which leads to a large-
scale convex program. To our knowledge, this is the first
practical implementation of this reduction. We evaluate our
algorithm using auction data from the Google Ad Exchange,
and compare it against the original AAG algorithm as well
as second-price auctions (with and without reserve prices) as
benchmarks. We find that the original AAG algorithm per-
forms well at high budget levels, while second-price auctions
perform well at low budget levels, but only our new algorithm
achieves high revenue across the board, typically reaching at
least 95% of the optimum.

Related Work We briefly discuss research closely related
to ours in this section. For a review of the literature on dis-
play advertising, readers are encouraged to refer to Korula et
al. [2016] and Choi et al. [2017] for recent surveys. As men-
tioned, our work builds on that of Mirrokni and Nazerzadeh



[2017], who first formally framed the preferred deals prob-
lem and considered the setting without constraints. The main
reason behind the high revenue potential of preferred deals is
bundling. Ghosh et al. [2007] show that it is computationally
hard to find the optimal bundling and propose approximation
algorithms. Babaioff et al. [2014] demonstrate that the strat-
egy of either selling each item separately or selling them all
as a grand bundle can obtain a constant approximation of the
optimal revenue for selling multiple items to a single buyer.
Our results provide a constant-factor approximation for the
multi-buyer case with general convex constraints under the
assumption that the items are identically and independently
drawn, which may be of independent interest.

Another related line of work is auction design with bud-
get constraints, which was initiated by Che and Gale [1998]
(see also [Benoı̂t and Krishna, 2001; Che and Gale, 2000]).
Pai and Vohra [2014] characterize revenue-maximizing auc-
tions for a single unit. For multi-unit settings, Dobzinski et
al. [2012] show that there is no Pareto optimal and incentive
compatible mechanism if the budgets are private, and for pub-
lic budgets, they give a unique mechanism that is Pareto op-
timal and incentive compatible, which was later extended to
divisible units by Bhattacharya et al. [2010]. Our work is also
related to the recent study of liquid welfare (see [Dobzinski
and Paes Leme, 2014; Lu and Xiao, 2017; Azar et al., 2017]).

2 Preliminaries
In the preferred deals problem there is a publisher with a se-
quence of impressions, denoted as I, to sell to n buyers. Let
v(k) = (v1(k), v2(k), . . . , vn(k)) be a valuation profile of
the buyers for the k-th impression. In this paper, we consider
an environment where buyer i has a public budget constraint
Bi. As usual, we use −i to denote buyers other than i. We
assume the buyer is risk-neutral with quasi-linear utility: the
utility from purchasing such an impression with valuation v
at price p is v−p. However, if the buyer’s total spend exceeds
Bi, his utility becomes −∞ (in other words, the budget is a
hard constraint on spend).

Let xi : I → [0, 1]n with
∑
i xi(k) ≤ 1 be an al-

location rule such that xi(k) specifies the probability that
buyer i gets the k-th impression. For convenience, let the
norm of the allocation rule be |xi| =

∑
k∈I xi(k). De-

note buyer i’s expected average valuation subject to xi by
EI [vi|xi] =

∑
k vi(k) ·

xi(k)
|xi| . In addition to the budget con-

straints, we consider an environment in which each buyer i
has a personalized constraint Pi ⊆ [0, 1]|I|.

Definition 1 (Personalized Constraint). An allocation rule x
is feasible only if for each buyer i, xi ∈ Pi. We assume
that Pi is convex and ~0 ∈ Pi where ~0 is a rule that does not
allocate anything to a buyer, i.e., ~0(k) = 0 for all k ∈ I.

Our personalized constraints are general enough to cap-
ture many practical requirements, such as overall volume con-
straints or weighted constraints on different subcategories of
inventory (e.g., different user demographics). Let Ii be a fi-
nite set of different impressions from the perspective of buyer
i. In other words, the set I of all impressions can be parti-
tioned into |Ii| subsets of impressions such that within each

subset, the impressions are identical according to buyer i.
Definition 2 (Identical Impressions). From the perspective of
buyer i, impressions k and k′ are identical if their values are
the same, i.e., vi(k) = vi(k

′), and they are anonymous in
Pi, i.e., for any xi ∈ Pi and all 0 ≤ δ ≤ xi(k) + xi(k

′),
xδi ∈ Pi where xδi (k) = δ, xδi (k

′) = xi(k) + xi(k
′)− δ, and

xδi (j) = xi(j) for all j 6∈ {k, k′}.
Anonymity means that the two impressions can be treated as
two copies of the same impression when checking whether
the allocation rule satisfies the personalized constraint. We
use fi : Ii → [0, 1] to denote the (empirical) marginal dis-
tribution of buyer i’s impressions: for κi ∈ Ii, fi(κi) =∑
k 1{k = κi}/|I|.
We consider three types of correlation: no correlation, ad-

ditive correlation, general correlation. In an environment with
no correlation, we assume buyer i’s distribution fi is indepen-
dent of other buyers’ distributions f−i. For additive correla-
tion, we allow the valuations to be correlated by a common
value. More precisely, vi(k) = η0 + νi(k) where νi is in-
dependent of νj(k) for any j 6= i and η0 ≥ 0 is a random
common component. An environment with general corre-
lation means that there can be arbitrary correlation between
valuations.
Definition 3 (Preferred Deal). A preferred deal 〈p, µ, I〉 for a
sequence of impressions I is specified by a price per impres-
sion p and a minimum purchase requirement µ. By accepting
the deal, the buyer obtains priority access to the impressions
in I and agrees to buy at least a µ fraction of the impressions,
each at price p.
By priority access, we mean that the buyer is given the oppor-
tunity to buy the impression before it is presented to any other
buyer, in contrast to other selling mechanisms like auctions
where buyers compete simultaneously. Given a deal 〈p, µ, I〉
for buyer i, since the price is fixed, the buyer will always
cherry-pick the impressions (i.e., buy impressions with high-
est valuations) to maximize her utility, subject to her person-
alized constraint and the minimum purchase requirement.
Definition 4 (Cherry-picking). Let CPi be a cherry-picking
function that returns the welfare-optimal allocation rule for
buyer i, formally,

CPi(I) = argmax
xi∈Pi

|xi| · EI [vi|xi].

Moreover, let CPi(I, µ) be a cherry-picking function satisfy-
ing the purchase requirement µ exactly, formally,

CPi(I, µ) = argmax
xi∈Pi

|xi|=µ|I|

EI [vi|xi].

If Pi ∩ {xi | |xi| = µ|I|} = ∅, then CPi(I, µ) = ~0.
Let CPWi(I) be the welfare obtained by cherry-picking,

i.e. CPWi(I) = |CPi(I)| · EI [vi|CPi(I)], and similarly,
CPWi(I, µ) = µ|I| · EI [vi|CPi(I, µ)]. Given a deal
〈p, µ, I〉, the buyer will choose µ∗|I| impressions such that

µ∗ = argmax
µ≤µ′≤Bi/(p|I|)

µ′ · (EI [vi|CPi(I, µ′)]− p)

and purchase the impressions according to CPi(I, µ∗).



The objective of the publisher is to design a series of
preferred deals to maximize revenue. The publisher first
selects a priority list (π1, π2, . . . , πn) of ordered buyer in-
dices, and a pair (pi, µi) of price and minimum purchase
requirement for each buyer i. The publisher will offer
deals to the buyers in sequence according to the priority
list and a buyer will receive impressions that are left over
from the buyers with higher priorities. More precisely, let
Hi(p, µ, I) be the set of impressions purchased by buyer i
when offered deal 〈p, µ, I〉. Then, the publisher will offer
deals (〈pπ1 , µπ1 , Iπ1〉, 〈pπ2 , µπ2 , Iπ2〉, . . . , 〈pπn , µπn , Iπn〉)
where Iπ1 = I and Iπj+1 = Iπj \Hπj (pπj , µπj , Iπj ).

For simplicity, we will omit the dependence on I or Iπj

when clear from context.

3 Auction-Adjusted Greedy Framework
We first introduce an algorithmic framework for computing
preferred deals, which extends the algorithm proposed by
Mirrokni and Nazerzadeh [2017] that works exclusively for
an environment without any constraints. The framework re-
duces the problem of optimizing preferred deals to the prob-
lem of optimizing impression allocations.

Let S be the set of buyers and ω(I, S) denote the max-
imum expected revenue that can be collected by offering a
series of deals. Note that when S = {i} is a singleton, the
optimal approach is to offer a deal with µi = |CPi| and
pi = min{E[vi|CPi], Bi/|CPi|} .

Lemma 1. For any µ such that CPi(µ) 6= ~0, given a deal
〈p, µ〉 with p = min{E[vi|CPi(µ)], Bi/(µ|I|)}, purchasing
impressions according to CPi(µ) is buyer i’s best response.
By Lemma 1, such a deal can extract the maximum so-
cial welfare subject to Pi or buyer i’s budget. Therefore,
ω(I, {i}) = min{CPWi, Bi}. For |S| ≥ 2, we can define
ω(I, S) recursively as follows:

ω(I, S) = max
i∈S,µ∈[0,1]

{min(CPWi(µ), Bi)

+ ω(I \ CPi(µ), S \ {i})}.
In this formula, we abuse notation and let CPi(µ) be the
set of impressions that buyer i would like to purchase, and
therefore, I \ CPi(µ) is the set of remaining impressions af-
ter buyer i takes CPi(µ). By Lemma 1, to extract revenue
min(CPWi(µ), Bi) from buyer i, the publisher can offer a
deal with pi = min{E[vi|CPi(µ)], Bi/(µ|I|)} and µi = µ.

However, computing ω(I, S) exactly takes exponential
time. In particular, Mirrokni and Nazerzadeh [2017] show
that it is NP-Hard to compute the optimal deals even without
any constraints. To circumvent the hardness result, Mirrokni
and Nazerzadeh [2017] propose an approximation algorithm,
called auction-adjusted greedy algorithm (AAG), to generate
a series of deals when there are no constraints. We cast their
algorithm in a more general framework that can handle gen-
eral convex constraints by taking in an impression-allocation
oracle. To define an impression-allocation oracle, we first de-
fine the notion of an impression-allocation rule.
Definition 5 (Impression-allocation Rule). An impression al-
location rule is (a1, · · · , an) ∈ [0, 1]n with

∑
ai ≤ 1 such

that ai specifies the fraction of impressions allocated to i.

Definition 6 (Impression-allocation Oracle). Given a set of
buyers S and a sequence of impressions I, an impression-
allocation oracle O returns an impression-allocation rule.

Input: Impression I, a set of buyers S,
impression-allocation oracle O

Output: Sequence of deals D.

If (|S| = 0) Return

Compute a = O(S, I)
Let S0 = {j ∈ S|aj = 0} and S1 = S \ S0.
D0 ← {(pj = 0, µj = 0)}j∈S0

For each buyer j ∈ S1

µj = aj
pj = min{E[vj |CPj(µj)], Bj/(µj |I|)}

Choose a buyer i ∈ argmaxj∈S1
pj

D ← (pi, µi) +AAG(I \ CPi(µi), S1 \ {i}) +D0

Return D
Algorithm 1: AAG Framework

Given an impression-allocation oracle O, the AAG frame-
work (Algorithm 1) takes a set of buyers S and a sequence
of impressions I as input and outputs a series of deals.
Intuitively, in each recursion, the AAG algorithm obtains
the minimum purchase requirement µj from the impression-
allocation oracle O and computes the associated price re-
specting µj as well as the constraints, such that buyer j will
buy exactly all the impressions from CPj(µj) according to
Lemma 1. Finally, the algorithm selects a deal with maxi-
mum price to offer.

3.1 Constraint-aware Welfare and Oracle
To apply the AAG framework in an environment with con-
straints, the key is to choose an impression-allocation oracle
that respects all these constraints.

In an environment without any constraints, the maximum
social welfare is a natural upper bound on the revenue of any
deals. However, in the presence of budget constraints and
other constraints, the maximum social welfare could be much
larger than the revenue of the optimal deal: consider a simple
case where there is only one buyer and a single impression,
and the buyer with budget 1 has valuation m on the impres-
sion. In this example, the maximum social welfare is m but
the maximum revenue, bounded by the budget, is 1.

Therefore, instead of social welfare, we use the constraint-
aware social welfare as the benchmark, which generalizes
the concept of liquid welfare defined exclusively for bud-
get constraints [Dobzinski and Paes Leme, 2014]. Intuitively,
constraint-aware social welfare is social welfare subject to the
budget constraints and the personalized constraints.

Definition 7 (Constraint-aware Social Welfare). Given a set
of buyers S and a set of impressions I, the constraint-aware



social welfare CAW(S, I) is computed according to the fol-
lowing convex program:

max
∑
i

∑
k vi(k) · xi(k)

s.t. xi ∈ Pi ∀i∑
k vi(k) · xi(k) ≤ Bi ∀i∑
i xi(k) ≤ 1, xi(k) ≥ 0 ∀i, k

(expost-CAW)

In the program, the first set of constraints ensure that the al-
location rule satisfies all personalized constraints, while the
second set of constraints ensure that the welfare contribu-
tion from each buyer does not exceed her budget constraint.
The remaining constraints ensure that the allocation rule is
valid. Let xCAW(S,I) be the allocation rule that maximizes
CAW(S, I).
Definition 8 (Constraint-aware Impression-allocation Oracle
CAO). Given a set of buyers S and a sequence of impressions
I, the constraint-aware impression-allocation oracle CAO
returns an impression-allocation rule a = (a1, · · · , an),
where ai =

∑
k x

CAW(S,I)
i (k)/|I|.

4 Approximation Guarantee
In this section, we present the formal proof for the approx-
imation guarantee by applying the AAG framework with
constraint-aware social welfare oracle for additive correla-
tions. We also provide a lower bound for general correlations.

4.1 Additive Correlation
Recall that under the additive correlation model, values take
the form vi = η0 + νi where the νi are independent and η0
is a random common component. We first consider the spe-
cial case of no correlation (η0 ≡ 0) and show that the AAG
algorithm with CAO gives a 1/2-approximation.

Theorem 1. The expected revenue of the sequence of
deals found by the AAG algorithm with CAO is at least
1
2CAW(S, I) when there is no correlation.

Proof. Let SOL(S, I) be the revenue generated by AAG al-
gorithm with CAO with input S and I. We prove by an in-
duction on the size of S from |S| = 1 to |S| = n. When
S = {i}, if pi = E[vi|CPi(µi)], then SOL(S, I) is exactly
CAW(S, I); otherwise, SOL(S, I) is Bi, but CAW(S, I)
must be equal to Bi in this case. Therefore, the base case is
true. Assume the induction hypothesis is true for all |S1| ≤ s.
Then for |S1| = s+ 1, for convenience, let

α(S, I|S′, I ′) =
∑
k∈I′

∑
i∈S′ vi(k) · x

CAW(S,I)
i (k)

Therefore, CAW(S, I) = α(S, I|S, I). Let i be the buyer
that the algorithm offers a deal to with input (S, I). First:

CAW(S, I) = α(S, I|S, I)
= α(S, I|{i}, I) + α(S, I|S \ {i},CPi(µi))

+ α(S, I|S \ {i}, I \ CPi(µi)).

Notice that

α(S, I|S \ {i}, I \ CPi(µi)) ≤ CAW(S \ {i}, I \ CPi(µi))
≤ 2 · SOL(S \ {i}, I \ CPi(µi))

where the first inequality is due to the fact that xCAW(S,I)
j (k)

constrained in j ∈ S\{i} and k ∈ I\CPi(µi) is a valid solu-
tion for program (expost-CAW) with S \ {i} and I \CPi(µi)
as input, and the second inequality is by the induction hypoth-
esis.

Next, for any buyer j, notice that if pj = Bj/(µj |I|),
then we have pj · µj · |I| = Bj ≥ α(S, I|{j}, I). Oth-
erwise, notice that µj = aj =

∑
k x

CAW(S,I)
i (k)/|I| and

pj = EI [vj |CPj(µj)] is the average valuation of aj frac-
tion of impressions due to cherry-picking. Therefore, we
have α(S, I|{j}, I) ≤ pj · µj · |I| for all j. As for
α(S, I|S \ {i},CPi(µi)), since there is no correlation,

α(S, I|S \ {i},CPi(µi)) = µi · α(S, I|S \ {i}, I)
≤ µi · α(S \ {i}, I|S \ {i}, I)
≤ µi · α(S, I|S, I)

where the equality uses the fact that there is no correlation,
the first inequality is due to the fact that xCAW(S,I)

j con-
strained in j ∈ S\{i} is a valid solution for program (expost-
CAW) with S \ {i} and I as input, and the last inequality is
because of the fact that the welfare does not decrease by in-
troducing an additional buyer since ~0 ∈ Pi. In addition,

α(S, I|S, I) =
∑
j α(S, I|{j}, I)

≤
∑
j pj · µj · |I| ≤ maxj pj · |I| ≤ pi · |I|

where the second-to-last inequality is due to the fact that∑
j µj =

∑
j aj ≤ 1. Therefore, we have α(S, I|S \

{i},CPi(µi)) ≤ pi · µi · |I|. To sum up, we have

CAW(S, I) = α(S, I|{i}, I) + α(S, I|S \ {i},CPi(µi))
+ α(S, I|S \ {i}, I \ CPi(µi))

≤ 2(pi · µi · |I|+ SOL(S \ {i}, I \ CPi(µi)))
= 2SOL(S, I)

Theorem 2. The expected revenue of the sequence of
deals found by the AAG algorithm with CAO is at least
1
3CAW(S, I) with additive correlation.

4.2 General Correlation
However, when the correlation can be arbitrary, we show that
even in an environment without any constraints, the perfor-
mance of preferred deals can be arbitrarily bad.
Theorem 3. There exists an instance in which preferred deals
can generate revenue at most O(1/n) of the maximum social
welfare even without any constraints.
Note that it is trivial to achieve a 1/n-approximation by offer-
ing the buyer i∗ = argmaxi E[vi|~1] a deal with price E[vi|~1]
and minimum purchase requirement 1, where ~1 always allo-
cates the impressions: ~1(k) = 1 for all k.

Proof of Theorem 3. We create an example as follows. Let
z to be some positive real number. For each 0 ≤ ` < n,
we create n · z1−

1

2` impressions and denote by Q` the set of
these impressions. Among Q`, for each 1 ≤ i ≤ n, there are
z1−

1

2` impressions such that buyer i has valuation z
1

2` while



the other buyers have valuation z
1

2`+1 + 1. The maximum
social welfare is E[maxi vi] =

∑n−1
`=0 n ·z

1− 1

2` ·z
1

2` = n2 ·z.
However, notice that for any buyer, they will cherry-pick

the impression in the order of Q0, Q1, · · · , Qn−1. Given any
deal, assume the first impression buyer i picks (the impres-
sion with highest vi) is lefti and the last impression (the im-
pression with lowest vi) is righti. Let A` = |{lefti | lefti ∈
Q`}| + |{righti | righti ∈ Q`}| be the number of first or
last impressions in Q`. Note that if A` = 0, all impressions
in Ql is chosen by only one buyer, which contributes rev-
enue at most z1−

1

2` · z
1

2` + (n− 1) · z1−
1

2` · (z
1

2`+1 + 1) ≤
z + 2(n − 1) · z1−

1

2`+1 . If A` > 0, then in the best sce-
nario, these A` buyers pick all z1−

1

2` impressions that they
have valuation z

1

2` from Q`. Therefore, it can contribute at
most A` · z1−

1

2` · z
1

2` + (n − A`) · z1−
1

2` · (z
1

2`+1 + 1) ≤
A` · z + 2(n − 1) · z1−

1

2`+1 . Note that
∑
`A` = 2n.

Thus, as z goes to ∞, the ratio between the revenue gener-
ated by preferred deals and the maximum social welfare is

limz→∞
2n·z+(n−1)·

∑n−1
`=0 z

1− 1
2`

n2·z = 3
n .

4.3 Efficient Implementation of the Oracle
Although AAG algorithm with CAO provides good approx-
imation, the computational complexity of CAO depends on
the number of impressions, which could be huge in practice.
To overcome this hurdle, we describe an efficient algorithm
to implement CAO. The complexity of our algorithm is poly-
nomial in

∑
i |Ii|, the number of different impressions.

In fact, writing down the ex-post allocation rule xi : I →
[0, 1] takes O(|I|) time, which is already unacceptable. To
alleviate this problem, we consider an interim allocation rule
χi : Ii → [0, 1] for 1 ≤ i ≤ n such that χi(κi) represents the
probability that buyer i receives impression κi ∈ Ii. Given an
ex-post allocation rule x, we can compute the interim alloca-
tion rule χ by χi(κi) · fi(κi) · |I| =

∑
k:k=κi

xi(k). We can
now use the following program to compute the interim alloca-
tion rule that maximizes the constraint-aware social welfare:

max
∑
i

∑
κi∈Ii vi(κi) · fi(κi) · χi(κi)

s.t. χi ∈ Pi ∀i∑
κi∈Ii vi(κi) · fi(κi) · χi(κi) · |I| ≤ Bi ∀i

χ is a feasible interim allocation rule
where χ is feasible if and only if there exists a feasible ex-
post allocation rule x that can induce χ, where an ex-post
allocation rule x is feasible if

∑
i xi(k) ≤ 1 for all k ∈ I and

xi(k) ≥ 0 for all i and k ∈ I. The oracle then returns ai =∑
κi∈Ii χi(κi) · fi(κi). We can now apply the techniques

developed by Cai et al. [2012] to obtain an efficient separation
oracle to verify whether χ is feasible. In theory, a program
with an efficient separation oracle can be solved efficiently by
the ellipsoid method, while in practice, constraint generation
can perform well, as evidenced by our implementation in the
next section.

5 Empirical Evaluation
We evaluate the performance of our framework by focusing
on an environment with budget constraints only, and there-
fore, our constraint-aware social welfare is known as liquid

welfare in the literature [Dobzinski and Paes Leme, 2014].
We use data collected from the Google Ad Exchange (AdX)
over a period of one day in summer 2018. The data consists
of bids from real-time second price auctions for specific ad
spaces online, known as inventory units. Because second-
price auctions are truthful, we can construe the bids as the
advertisers’ values for each impression and use the data for
the purpose of preferred deal optimization. An advertiser’s
bid for an inventory unit can vary throughout the day due to
variations in context (e.g., the user viewing the ad).

5.1 Data Set and Experiment Setup

We run our experiment on 5 high-volume inventory units for
the day in question. Recall that the complexity of our al-
gorithm mainly depends on the number of buyer-bid pairs.
Therefore, we discretize the bids to cents and only consider
the top 50 most frequent buyer-bid pairs. In particular, for
each inventory unit, we first compute the frequencies for dis-
tinct buyer-bid pairs. Then, we sort the pairs in decreasing
order of frequency and retain the top 50 pairs. Finally, in our
experiment, we take the first 100K auctions in which at least
two of the top 50 buyer-bid pairs appear in the auction to form
our instances. These are the impressions to be allocated via
preferred deals. Our algorithm can scale well beyond 100K
impressions and we choose 100K because it represents a siz-
able instance where it is still possible to exactly compute the
maximum liquid welfare using LP (expost-CAW), so that we
are able to report exact approximation numbers.

For each inventory unit, we conduct experiments
parametrized by a budget ratio r ∈ [0.1, 1.5]. This parameter
controls the ratio between the expected total budgets and the
social welfare, which is the summation of highest bids over
all auctions. For a fixed setting of r, we repeat the experi-
ment 50 times and generate the budget as follows: for each
run, (1) compute the contribution si to the social welfare for
each buyer i, by summing buyer i’s bids over all auctions that
it wins; (2) set buyer i’s budget to a value uniformly drawn
from [0, 2 · si · r], so that the mean of the generated budget is
si · r, proportional to the buyer’s social welfare contribution.
By our construction, as r increases, the budget constraint be-
comes looser and one should expect the liquid welfare bench-
mark to increase as r increases. Finally, for each budget ratio
r and each method, we report the ratio between the average of
the revenue (welfare) for the 50 runs and the social welfare.

We compare the auction-adjusted greedy algorithm with
budget (AAGBudget) against three other methods. The first
is the basic second-price auction. In a second-price auction
with budget constraints, the buyer’s submitted bid is adjusted
by taking the minimum between his bid and his remaining
budget. We call a second-price auction naive if it is with-
out reserve (Naive SPA). In a second-price auction with op-
timal personalized reserves (Optimal SPA), we optimize re-
serve prices by finding the revenue-maximizing reserve for
each buyer. We also consider the original auction-adjusted
greedy algorithm (AAGNoBudget) proposed in Mirrokni and
Nazerzadeh [2017], which ignores the budget.



Inventory ID 1 2 3 4 5
Liquid Welfare 72.1% 74.8% 74.1% 78.6% 83.7%

AAGBudget 71.8% 70.9% 73.8% 75.9% 78.8%
AAGNoBudget 44.4% 41.2% 40.2% 45.2% 54.5%

Naive SPA 5.5%, 99.7% 34.8%, 92.4% 22.2%, 93.8% 34.3%, 95.3% 33.8%, 94.8%
Optimal SPA 61.2%, 66.2% 44.9%, 86.7% 66.5%, 71.6% 50.9%, 87.1% 62.1%, 82.1%

Table 1: Revenue and welfare (respectively) as the fraction of the social welfare for r = 1. For the Liquid Welfare, AAGBudget, and
AAGNoBudget, revenue is equal to welfare.

Figure 1: Revenue and Welfare Plot: the x-axis is for the budget ratio r and the y-axis is the ratio between the revenue (welfare) of different
methods and the social welfare

5.2 Empirical Results
We implemented our algorithm and experiments in Python
2.7, using the Glop linear programming solver [Google,
2018] to compute the liquid welfare within our algorithm.
Each run of the experiment takes roughly 30 seconds on a
single CPU. Figure 1 demonstrates the revenue and welfare
trends for a single inventory unit as the budget ratio r is var-
ied (trends were very similar across all inventory units), and
Table 1 summarizes the results for r = 1.

From Figure 1 we see that our algorithm’s (AAGBud-
get) revenue performance closely tracks the optimal revenue
achievable as captured by the liquid welfare for all values of
r. The original AAG algorithm that does not take budget into
account (AAGNoBudget) performs poorly especially when
the budgets are small, and improves as the budgets increase.
This is because, when the budget is small, the AAGNoBud-
get algorithm might offer a deal that violates buyer’s budget.
Given such a deal, the buyer may reject the deal, resulting in
0 revenue. This is why AAGBudget shows 0 revenue up to
r = 0.5. Recall that for AAGBudget and AAGNoBudget,
revenue is equivalent to welfare.

An opposite revenue trend holds for the second-price auc-
tion benchmarks: their revenue performance decreases as r
increases. This is because when the budget is small, the
second price auction may be able to exhaust all the budgets
within 100K auctions and therefore approach the liquid wel-
fare optimum. For second-price auctions, especially the one
with optimal reserves, there is a trade-off between revenue
and efficiency. To understand why welfare can be higher than
liquid welfare for the second-price auctions, recall that liquid
welfare only provides an upper bound on the revenue but not

the welfare. If auction prices are consistently low but values
are high, it is possible to achieve a high total welfare beyond
the available budget, while respecting budget constraints.

Table 1 provides results, indexed against the optimal so-
cial welfare (unconstrained by budget) to interpret both the
revenue and social welfare levels together. When compar-
ing revenue directly against liquid welfare (the revenue op-
timum), AAGBudget’s performance ranges from 94–99% of
the optimum across inventory units, whereas AAGNoBudget
ranges from 54–65% and Optimal SPA from 60–90%. Our
algorithm’s revenue performance is consistently close to the
liquid welfare benchmark across all values of r and outper-
forms all other algorithms, which demonstrates that our algo-
rithm has a stable and much better performance in practice
than the theoretical 1

2 -approximation guarantee.

6 Conclusions
In this paper, we studied the problem of preferred deals with
general constraints and provided an approximation algorithm
to maximize the revenue obtained from the deals, under both
independent and additively correlated valuations. We also
validated our algorithm with experiments on auction data col-
lected from a major advertising exchange, which showed that
its empirical performance far surpasses the theoretical guar-
antees. One interesting future direction is to improve the ap-
proximation ratio or prove a matching lower bound for pre-
ferred deals, even in an environment without any constraints.
Another interesting question is to understand how to com-
bine and optimize the various ways used to sell display ad im-
pressions together, including reservation contracts, preferred
deals, and open auction.
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