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Abstract. There are two kinds of bidders in sponsored search: most
keep their bids static for long periods of time, but some do actively
manage their bids. In this work we develop a model of bidder behavior
in sponsored search that applies to both active and inactive bidders.
Our observations on real keyword auction data show that advertisers see
substantial variation in rank, even if their bids are static. This motivates
a discrete choice approach that bypasses bids and directly models an
advertiser’s (perhaps passive) choice of rank. Our model’s value per click
estimates are consistent with basic theory which states that bids should
not exceed values, even though bids are not directly used to fit the model.
An empirical evaluation confirms that our model performs well in terms
of predicting realized ranks and clicks.

1 Introduction

A major portion of the revenue of search engines such as Google and Bing
comes from advertising next to search results. Advertisers bid for placement
on keywords relevant to their business, a practice known as sponsored search.
A central problem in empirical modeling of sponsored search is to infer bidder
values from their observed bidding behavior. Information on bidder values can
inform virtually all aspects of the keyword auction design, including changes to
the ranking rule to improve revenue [7]; reserve pricing policies [9]; and the
impact of improved click-through rate models on efficiency [6]. With bidder
values at hand, counterfactual experiments can be performed to evaluate the
effect of changes to auction parameters before live testing, and even to compare
the current design to more classical auctions such as VCG [1].

In this work we develop a model of bidder behavior in sponsored search that
applies to both active and inactive bidders. We observe that most advertisers
in Yahoo’s sponsored search market keep their bids essentially constant for long
periods of time (e.g., several weeks), as others have noticed independently in
Bing data [10]. On the other hand, some advertisers on competitive, high-volume



keywords do actively manage their bids [3]. We propose a discrete choice model
of bidder decisions that can identify values under both kinds of behavior. Our
key insight is that even though an advertiser’s bids may show little variation, its
rank typically varies considerably because of exogenous changes in the auction’s
parameters, such as the weights (related to click-through rates) placed on bids
for ranking.

Our approach is to bypass bids and instead directly model an advertiser’s
(perhaps passive) choice of rank across auctions. Because there are only a small
number of ad slots—no more than twelve—available on a search results page,
an advertiser’s choice of rank lends itself well to discrete choice modeling [11].
Besides value per click, our model also provides a useful estimate of the ad-
vertiser’s regret variance, which captures how consistent its behavior is with a
single value per click. We evaluate our model in terms of its ability to predict
advertiser rank and realized clicks in future auctions, against both simple base-
lines assuming constant rank and click-through rates, and the recent stochastic
variability model of Pin and Key [10].

Related Work. The earliest empirical estimates of advertiser values in sponsored
search appear in the work of Varian [12]. His approach is to develop an equilib-
rium concept to model bidding, and jointly estimate bidder values on individual
auction instances (i.e., on single queries) by minimizing deviation from equilib-
rium. This method, however, does not extend easily to several auction instances
over time [1]. In another early work Borgers et al. [2] estimate values using a
revealed preference approach: an advertiser’s bid updates imply bounds on its
value, assuming best-response, and with enough observations the bounds can
pin down the value. However, this approach is ineffective if advertisers do not
update their bids often, which is very common as previously mentioned.

More recently, Athey and Nekipelov [1] have developed an approach tailored
to advertisers with static bids. By modeling the distribution over an advertiser’s
opponent bids, they derive a marginal cost, or “incremental cost per click” curve,
and obtain a value based on where the advertiser bids along the curve. (A ra-
tional agent sets marginal cost equal to marginal value.) Pin and Key [10] have
developed a simplified version of this approach that yields very similar predic-
tions but is much more scalable. For advertisers that update their bids often,
their method must estimate a separate value corresponding to each bid, which
may be problematic unless there is good reason to believe their value per click
indeed changes with each bid update.

2 The Model

In this section we provide the necessary background on sponsored search needed
to understand advertisers’ decision problems. We describe the basic model of
sponsored search introduced in [4, 12]; for a survey of the literature see [8].
We then present our discrete choice logit model of bidder behavior; for a full
treatment of logit and other discrete choice models see the monograph [11].



2.1 Sponsored Search

We first focus on a single search query for a given keyword. When the query
is issued, an auction is run to allocate the ad slots on the search results page
among advertisers bidding on the keyword. Let K be the number of slots and
N be the number of agents, where N > K. The core of the current auction
mechanism (ranking and pricing) used by major search engines is known as the
generalized second-price auction (GSP) [4]. Each agent i places a bid b;, and
the search engine assigns weights w; that depend on the ad’s past click-through
rates. The ads are then ranked in descending order of their score w;b;. Without
loss of generality, we can re-index the agents so that wiby > woby > ... > wyby.

Agents are charged only when a click is received. In the GSP, payment follows
a second-price rule: an agent is charged the lowest bid it could have placed while
maintaining its position. In particular, to maintain its position, agent ¢ must
bid so that w;b; > w;11b;11, and so its price per click (PPC) is w;+1b;+1/w;. In
practice search engines also set a reserve score s for each keyword, so that the
minimum PPC ¢ can pay is r; = s/w;. If i bids below r;, its ad is not shown.

The click-through rate (CTR) of ad 4 in position j is denoted ¢;;. We assume
that CTRs are separable into an advertiser effect a; and a position effect z;,
meaning that they factor according to ¢;; = a;x;. Although separability is only
an approximation to actual CTR patterns [1], search engines still estimate ad-
specific and position-specific parameters because the ad effect a; is a key input
into the ad’s weight w;. We assume that each agent ¢ has a value per click v;
and that its utility is quasi-linear, meaning that if it obtains slot j at a PPC of
p; then its (expected) utility is:

Vi = (vi — pj)cij. (1)

In practice the bid space is discretized into increments (e.g., 10 cents), but these
are fine enough relative to the range of allowed bids that the bid space can be
viewed as continuous. However, note that an agent’s utility only depends on
the particular position selected, holding the other agents’ bids fixed. In a single
auction scenario, we can therefore view an agent’s bidding decision as a discrete
choice problem of selecting which position to appear in. The bid confers no more
information about the agent’s value beyond the position selected.

2.2 Discrete Choice

From the perspective just developed, we can model an agent’s collective rank
decisions across the auctions it participates in by using methods of discrete
choice analysis from econometrics [11]. The basis of discrete choice analysis is the
random utility model. In our context, this model posits that an agent ¢’s utility
for slot j decomposes into U; = V; +¢;, where ¢; is a random error, and V; is the
representative utility given by (1), derived from observable features of the chosen
alternative—in our case, simply the position effect. Agents act rationally in that
they choose the slot j with highest utility U;. Under the random utility model,



an agent’s choice of rank can change from auction to auction even if the others’
bids are held fixed, as the error terms vary across auctions. In each auction, the
random utility induces a distribution over the agent’s choice of position.

We use a maximum likelihood approach to fit the representative utility’s
parameters. In discrete choice modeling the observations take the form U, ;) >
Ujfor j=1,...,K and t =1,...,T, where ¢ indexes the auctions and o(t) is
the slot chosen at auction ¢. We emphasize that the observations, and therefore
the model, do not take into account the bids placed, only the ranks obtained at
each auction instance. The actual parametric model we fit is of the form:

Uj = Bvxj + Bpa:jpj + €. (2)

Because utility can be normalized to any scale, we have dropped the leading a;
term from the equations, and the error variance can also be normalized to some
convenient constant C. This follows from the fact that only differences in utility
matter when making a choice—we refer to [11] for the technical and conceptual
details. Once we fit the model to data, the coeflicient —f, corresponds to the
marginal utility of money, and hence —f,/8, gives an estimate of v;. The error
variance, which was normalized to C, is proportional to 3, 2 on the money scale.

Error Interpretation. A common interpretation of the error term is that it cap-
tures unobserved features of the alternatives that impact utility. However, under
our value-per-click model, nothing differentiates slots besides their position ef-
fects. Instead, we find it more appropriate to interpret the error terms as captur-
ing an agent’s regret, defined as the amount of foregone utility from choosing one
slot over another. If the agent chooses slot j over k, for instance, then Vi —Vj is
its regret and py; = € —€; > Vi — V; is a bound on this regret (which is binding
when errors are minimized). The error distribution induces a distribution over
regret. Note that regret can be negative, in which case it indicates the amount
by which the chosen slot is preferred over the alternative.

As we will see in Section 3, agents typically hold their bids constant for long
periods of time. In this case, variation in rank across auctions comes from exoge-
nous changes such as updates to the advertiser effects, the number of opponents,
or the reserve score [10]. The distribution of an agent’s regret from keeping its
bid fixed is therefore induced by these exogenous changes. Nevertheless, we find
it fair to characterize an agent’s distribution over ranks and regret as its “behav-
ior”, even if it holds its bid fixed, because the distribution captures the extent to
which the agent manages its bid to maximize utility. Indeed, the regret (equiv-
alently, error) variance in discrete choice models is sometimes interpreted as a
measure of “bounded rationality” [5].

Error Distribution. To complete the model specification we need to detail the
error distribution. In this work we assume that errors are independently and
identically distributed according to an extreme value distribution with mean 0,
which implies that regrets are distributed according to a logistic distribution
with mean 0. This is known as the logit model, and with this specification there



is a closed-form formula for the choice probabilities of different slots given their
representative utilities [11]. Once we have fit v; = —f3,/8, and therefore obtain
Vi,..., Vi for agent i in a given auction, and the inverse estimated error vari-
ance is A = 3 2/C, then the choice probabilities are given by the familiar logit
formula:

A

Zszl Vi

Observe that as A increases (error variance decreases), the choice probabilities
put increasing mass on the slot with highest representative utility, and the agent
is utility maximizing in the limit. As A\ decreases (error variance increases),
the choice probabilities become increasingly uniform over slots, and the agent’s
choices of ranks across auctions are less consistent with a fixed value per click.

Pr(i, j) =

3 Data Description

Our empirical analysis is based on Yahoo’s sponsored search logs for a one month
period in the first half of 2010. We randomly sampled 20 keywords from each
of the top 5 keyword deciles by volume. These 100 keywords together yield a
data set of nearly three million auctions that involve 15699 unique advertisers.
We used the first three weeks of data for training and the last week for testing.
As our study only examines advertisers present in both the training and testing
data sets, the number of included advertisers drops to 2603.

To estimate our logit model as specified in (2) we used the mlogit package
in R [13]. We fit a model to each advertiser separately. The construction of the
logit model entails computing the PPC p; of each position j that ad ¢ sees as
an option, for every auction. Because ad i only occupied a certain position 7,
yielding one p; value, we computed py for every k # j, by applying the second-
price rule described in Section 2.1 and using available data on its opponents’
weights and bids, as well as its reserve price.?

We needed to further filter the data in order to avoid regression problems
such as collinearity. Estimating the PPC of the last position requires informa-
tion about the ad immediately below the last ranked ad, which is unavailable in
our data—we only have records on ads that were shown. Therefore we discarded
the final slot in each auction as an alternative. We also filtered out advertisers
that were almost always charged their reserve price, and consequently appeared
mainly in the bottom positions, because such ads saw the same PPC for multiple
slots (i.e., the reserve price) which created singularity issues for the regression.
Although the amount of discarded data due to this latter issue accounts for more
than 20% of the remaining data, these advertisers’ rank decisions, which over-
whelmingly focus on getting the bottom slots, would provide little information

3 Yahoo maintains two different reserve scores: one for the mainline (ads shown at
the top) and the sidebar (ads shown on the right). The mainline reserve price was
not available for this analysis. However, we found that using the second-price rule
together with the sidebar reserve price alone was enough to reproduce observed
PPC’s to within 0.02% accuracy on average.



about bidders’ behavior in general. Moreover, as the inclusion of ads displayed
infrequently would add significant noise to our analysis, while providing few in-
sights about bidding behavior, we further removed more than 1500 ads that were
shown less than once a day on average, leaving us with a dataset of 197 ads.
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Fig. 1. Variation in bid, rank, weight (closely related to ad effect), and cost (i.e., PPC)
for a representative set of 10 ads sampled uniformly at random from our dataset. The
center dot gives the median; the box gives the lower and upper quartiles; the whiskers
give the minimum and maximum; and any remaining dots indicate outliers. The ads’
bids, weights, and costs have been normalized by the mean bid, weight, and cost for
the ads’ respective keywords to enable variation comparisons across panels.

Preliminary Analysis. Figure 1 presents a simple summary of bidding behavior
for a representative sample of 10 ads from our dataset of 197. In this figure an
ad’s bids were normalized by the average bid (over opponents) of its associated
keyword; we also normalized weight and cost (i.e., PPC) in the same way. A
normalized bid of 1 means that it matches the average bid on the keyword.

We observe that six out of the ten ads barely vary their bid at all, and only
the fourth and fifth substantially vary their bid. Pin and Key [10] also found
that bids changed very little in Microsoft’s sponsored search market, so this is a
general feature of sponsored search and not just Yahoo’s market. On the other
hand, note that there is substantial variation in rank for all ads. In particular,
the first ad takes on positions between 3 and 10, and the sixth ad between 3
and 9, even though their bids stay constant. For the first ad, some of the rank



variation can be attributed to its changing weight (i.e., the estimate of its ad
effect changes across auctions). There is less weight variation for the sixth ad, but
other factors can change the rank such as variation in the number of opponents.

The variation in rank and cost here makes it possible for our discrete choice
approach to identify values for the advertisers. Revealed preference approaches
based on bid changes, as in [2], would fare poorly because of the dearth of bid
update observations for most ads. On the other hand, for those ads whose bids
do vary a lot, such as the third and fourth, approaches based on static bids need
to estimate a different value for each bid, while our logit model also handles this
case and estimates a single value for each advertiser.

4 Regression Results

We first report on the regression coefficients of the fitted models for each ad to
confirm that they take on sensible values. Among the 197 ads we examine, 178
(or 90%) have nonzero 3, and 8, coefficients significant at the 5% level. All of
these 178 ads have positive 3, coeflicients and negative 3, coefficients, implying
that utility is increasing in CTR and decreasing in PPC, as expected.

log Value
e
log lambda

log Bid log Bid

Fig. 2. Regressions results (value and error variance) against average bid (over the
testing period) over 178 ads. Axes have been arbitrarily normalized for confidentiality
reasons. In the left panel we see that bids lie uniformly below values. The Loess curve
in the right panel confirms that inverse error variance A decreases with bid in general.

Figure 2 provides a more detailed look at the estimated values per click v; and
inverse error variances J\;, derived from the regression coefficients as explained
in Section 2.2. According to the theory on sponsored search [4, 12], bidding
above one’s value is a dominated strategy, so we would expect estimated values



to exceed bids. This is corroborated in the figure, where values uniformly lie
above the agents’ average bids over the training period. We find this result
striking because our model imposes no such constraints on agents’ values, and
indeed with little training data (one week rather than three) we do observe a few
estimated values falling below bids. In fact, recall that bids are not an input to
our model: we only rely on the observed position effects, PPC’s, and an agent’s
rank at each auction. According to these estimated values agents shade their
bids 20% below their value, on average (in terms of median and mean). The
agents’ return on investment (ROI), defined as profit per click over PPC, had a
median of 48% and a mean of 95%, indicating a skewed distribution.

In Figure 2 we also see how the inverse error variances \; correlate with
average bids. Recall that a high \; suggests that ¢ is behaving more ‘rationally’,
in the sense that its choice of slots across auctions is almost consistent with a
fixed value per click, whereas a low \; indicates a more ‘irrational’ agent because
its choices imply a high regret variance no matter what value per click is ascribed.
According to the figure bid is negatively correlated with ‘rationality’, or stated
more formally, correlated with high regret variance. We see the following possible
reason. Low bidders tend to compete either on low-competition keywords or for
low-ranked slots, and in those cases the slots are similar in terms of both CTR
and PPC. Therefore even if the agent’s position varies among these bottom slots
(as it holds it bid fixed), its regret stays low and varies little. The situation is
the opposite for high bidders that appear on high-competition keywords, where
the top slots are highly differentiated in terms of CTR and PPC.

5 Model Evaluation

In this section we first describe the baseline models against which we compare
our logit model, and then proceed to evaluate their performance in predicting
future ranks and realized clicks.

5.1 Baseline Models

We first compare our logit model, denoted as Miqgt, against two simple baseline
models that provide predictions about bidders’ positions and number of clicks
using empirical distributions constructed directly from training data. The first
simple baseline model, the constant rank model (M,ank), specifically focuses on
rank predictions. In particular, M,k assumes that each advertiser seeks to have
its ad 7 displayed at a targeted position j*, and treats the most frequent observed
position for ad ¢ in the training data as its targeted position j* by assigning a
probability value of 90% to j*. In order to account for variation in agents’ posi-
tions, the model allows positions other than j* to appear with equal probabilities
that sum up to the remaining (100% — 90%) = 10%.

The second simple baseline model, called historical click (Mcjick), is tailored
for click predictions, assuming that agents expect to receive a constant click
through rate for each auction. Given the training data, Mgk computes ¢;, the



average number of clicks per auction that ad ¢ received during the training data’s
timespan, and uses ¢; to estimate the number of clicks ¢ will receive in the future
by multiplying ¢; with the number of auctions in which 7 has a slot.

We further evaluate the estimates produced by Misgir against those obtained
from the stochastic model (Mggocn) of Pin and Key [10]. They model an agent
called Agent 0 with known value vy and weight wy submitting bid by against n
opponents, who submit random i.i.d bids. Note that in this context, each agent
is associated with an ad and a bid value, which diverges from the viewpoint
previously used in the other models, Mpnk, Mciick, and Miggie, that only view
each ad as a different agent, who may place multiple bids across time.

Mstoch assumes that the agents’ weighted bids w;b; /wg, from the perspective
of Agent 0, are drawn from a known probability distribution, whose cumulative
distribution function (c.d.f) is denoted as F'. As the number of opponents may
vary from one auction to another, Mgocn incorporates a discrete probability
distribution on the number of opponents, ¢,, where 271;/:—01 qn = 1.

When Agent 0 bids by greater than the reserved price, the probability that
it gets the j-th position given that it faces n opponents is:

Prtiin) = () a0 (1 = F (b))’ ®)

Let 1(by) be the CTR of the slot Agent 0 receives when it bids by. The expected
number of clicks that Agent 0 receives per auction is computed as:

N—-1 n

E[(bo)] = > Y Pr(j;n)co;. (4)

n=0 j=0

Given the training data set, we can construct the distribution of number of
opponents ¢, and the distribution of weighted bids F' for each agent. These
distributions allow us to estimate their expected ranks and expected number of
clicks per auctions via (3) and (4) respectively.

Recall that an ad may appear in Mg as different agents, each of which
corresponds to a different bid value submitted for the same ad. In order to
compare the predictions of Mg, with those of the other models, we apply Mgioch
to each pair of ad and bid value, and subsequently average over all same-ad pairs
to compute the estimates for each ad.

5.2 Estimation Results

We evaluate the models Myank, Miick; Mstoch, and Miegie based on their predictions
of ads’ ranks and clicks they receive. Note that the M., baseline only applies
to rank prediction, and the M baseline only applies to click prediction.

Rank Distribution. We measure the predictive power of Myank, Mstoch, and Miegit
with respect to ads’ ranks by the likelihood of the testing data induced by each
model. In particular, given a model M € {Mank, Mstoch, Miogit } learned from the
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Fig. 3. Rank prediction results, with ads divided into 5 bins according to average
volume. Volume increases exponentially towards the right.

training data for an ad 7, we compute the log likelihood of the ad’s positions in
the testing data set D of m auctions in which ¢ won a slot, as follows:

Li(D [ M) = log Pri(a(t) | M), ()
t=1

where Pr;(o(t) | M) is the probability that i gets the slot o(t) in auction ¢,
as specified by model M. In order to investigate these models’ robustness to
data availability, we also varied the training data set’s timespan. Due to space
constraints we only report in detail on the results from models trained on the
whole first three weeks of the data.

We divide the ads into 5 bins according to the volume of auctions in which
they are present. For each bin, we compute the average negative log likelihood
of ads’ ranks per auction and per ad. Figure 3 shows that the logit model Mqgit
consistently outperforms the simple baseline M, model in every bin, and also
provides better rank predictions than the stochastic model Mgoch in most bins.
As expected, prediction performance improves as the average volume (and hence
amount of training data) increases.

Realized Clicks. We next compare the models Mjick, Mstoch, and Miegit, by eval-
uating the estimated number of clicks each ad would receive against the number
of realized clicks in the testing data. Given a model M’s estimated number of
clicks received by ad i per auction, éV, and the number of realized clicks per
auction over the testing data for ad i, ¢}, we can calculate the relative error? for
model M as follows:
| —cf |

erry(D | M) = L4 (6)
G
4 We can only compute this relative error for the 51 ads in our dataset that received

at least one click.
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Fig.4. CTR prediction results, with ads divided into 5 bins according to average
number of clicks. Clicks increase exponentially towards the right.

We again split the ads into 5 bins, this time based on their average number of
clicks, and then compute each bin’s relative error as the average of err;(D | M)
over all ads 7 in the bin for each model M € {Mcjick, Mstoch, Miogit }. Figure 4
demonstrates that the simple baseline Mk model performs particularly well
for ads that attract fewer hits, beating both Mgtoch and Miegit in the least-clicked
ad bin. The logit model predicts clicks noticeably better than Mg for ads that
receive more clicks, and moreover, consistently outperforms Mg in all bins.
The predictive power of each model improves as the average number of realized
clicks increases, as observed in a different study [10]. That study examined only
ads that received at least as much actual clicks as the ads in our two most clicked
bins, namely the two right-most bins in Figure 4. They also incorporated results
from a baseline model similar to Mgk, but trained this baseline model on less
data than the baseline Mgk we employed.

Note that in order to make rank and click predictions Mgioch has to examine
the actual bids placed by agents in the testing data. In contrast, Meg: examines
an agent’s opponents’ bids in the testing data to predict realized rank (or more
precisely, rank distribution) and clicks; it does not directly draw on the agent’s
behavior (i.e., bids) to predict. Despite this seeming disadvantage, Miogit performs
very well against Mgoch-

6 Conclusion

We have introduced a novel discrete-choice approach to modeling the bidding
behavior of both active and inactive bidders in sponsored search. Our logit model
of advertisers’ rank decisions produces bidder value estimates that are consistent
with basic theory on how values relate to bids, even though these constraints are
not incorporated into the regressions. Our empirical evaluation showed that the
logit model predicts realized ranks and clicks well, against both simple baselines



and a more sophisticated baseline that even draws on agents’ actual bidding
behavior to make predictions, in contrast to our approach.

The parametric form of utility given in (2) is one of several potential options
that we hope to investigate in future work. For instance, we could add position-
specific intercepts to the utility specification in order to see whether advertisers
value higher slots more than lower slots, all else (i.e., click-through rate) held
equal, which would indicate utility for the “branding effect” of slots. We could use
a nested logit model [11] that not only relaxes the i.i.d. assumption of the error
term, but can also incorporate the variation in the number of bidders competing
in an auction. Finally, as our data filtering process left us with a much smaller
sample than the original set, we would like to scale up our empirical analysis
and include more high-click rather than high-volume ads.
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