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Abstract. In sponsored search auctions advertisers typically pay a fixed amount per
click that their advertisements receive. In particular, the advertiser and the publisher
enter into a contract (e.g., the publisher displays the ad; the advertiser pays the pub-
lisher 10 cents per click), and each party’s subjective value for such a contract depends
on their estimated click-through rates (CTR) for the ad. Starting from this motivat-
ing example, we define and analyze a class of contract auctions that generalize the
classical second price auction. As an application, we introduce impression-plus-click
pricing for sponsored search, in which advertisers pay a fixed amount per impression
plus an additional amount if their ad is clicked. Of note, when the advertiser’s esti-
mated CTR is higher than the publisher’s estimated CTR, both parties find negative
click payments advantageous, where the advertiser pays the publisher a premium for
the impression but the publisher then pays the advertiser per click.

1 Introduction

In the classical sealed-bid second-price auction, bidders report their value for the auc-
tioned good, and the winner is the bidder with the highest reported value. Incentive
compatibility is achieved by charging the winner the least amount for which they
would have still won the auction (i.e., the winner pays the second highest bid). In
contrast, consider a typical sponsored search auction where, for simplicity, we assume
bidders compete for a single available impression: Advertisers report their value-per-
click; the winner is the bidder from whom the publisher expects to receive the most
revenue; and the winning bidder pays the least amount per click for which they would
have still won the auction. While sponsored-search auctions are conceptually similar
to traditional second price auctions, there is a key difference: Goods in traditional
auctions are exchanged for deterministic payments, and in particular, the value of
these payments is identical to the bidder and the auctioneer; in sponsored search
auctions, impressions are exchanged for stochastic payments, and the value of such
payments to the publisher and the advertiser depends on their respective estimated
click-through rates (CTR). For example, if the advertiser’s estimated CTR is higher
than the publisher’s, then the advertiser would expect to pay more than the publisher
would expect to receive.

Starting from this motivating example of sponsored search, we define and develop a
framework for contract auctions that generalize the second price auction. We con-
sider arbitrary agent valuations over a space of possible contracts; in particular, val-
uations may diverge for reasons other than mismatched probability estimates. As an
application, we introduce impression-plus-click (IPC) sponsored search auctions, in
which advertisers pay a fixed amount per impression plus make an additional pay-
ment per click. Interestingly, when the advertiser’s estimated CTR is higher than the
publisher’s estimate, both parties prefer negative click payments—or paid per click



pricing: The advertiser pays the publisher a premium for the impression, and the
publisher then pays the advertiser per click.

In the remainder of this introduction we review sponsored search auctions and related
work. General contract auctions are developed in Section 2, and a dominant strategy
incentive compatible mechanism is proposed. Impression-plus-click sponsored search
auctions are introduced in Section 3. In Section 4 we analyze an impression-or-click
auction, and consider connections to the hybrid auction model of Goel & Munagala
[7]. We conclude in Section 5 by discussing potential offline applications of this work,
including applications to insurance, book publication and executive compensation.
Some proofs are left to the Appendix.

1.1 Background and Related Work

Sponsored search is the practice of auctioning off ad placement next to web search re-
sults; advertisers pay the search engine when their ads are clicked. These ad auctions
are responsible for the majority of the revenue of today’s leading search engines [13].
Edelman et al. [6] and Varian [18] provide the most basic, standard model for spon-
sored search auctions and analyze its equilibrium properties (see also Lahaie et al. [14]
for a survey of the literature in this area). We do not provide a description of this
model here because our contract auction abstracts away from its details in order to
cover pricing schemes beyond per-click or per-impression.

Harrenstein et al. [10] recently and independently developed the qualitative Vickrey
auction, a mechanism similar to the general contract auction presented here. The
primary differences between their work and ours concern subtleties in the bidding
language, the tie-breaking rules, and the assumptions guaranteeing truthfulness. In
this paper we detail our interpretation and results for contract auctions; our main
contribution, however, is applying this framework to sponsored search, and in partic-
ular introducing and analyzing impression-plus-click pricing.

Truthfulness under the standard model of sponsored search is well understood [1].
In mechanism design more generally, Myerson [16] characterizes payment rules that
achieve truthfulness when types are single-dimensional. Holmstrom [11] gives a char-
acterization for type spaces that are smoothly path-connected (see also [15]). In con-
trast, our truthfulness result for contract auctions does not assume any topology on
the type space. Instead it is a consequence of the particular structure of the outcome
space (the auctioneer may contract with only one agent) together with a novel con-
sistency condition between the auctioneer and agents’ preferences.

Contract auctions generalize the single-item Vickrey auction [19], but are conceptu-
ally distinct from the well-known the Vickrey-Clark-Groves (VCG) mechanism [4, 9].
An intuitive interpretation of the VCG mechanism is that it charges each agent the
externality that the agent imposes on others; thus, the mechanism only applies when
utility is transferable between agents through payments. This is not possible when,
for instance, the agents and auctioneer disagree on click-through rates, because there
can be no agreement on how to quantify the externality.

Although the basic model of sponsored search given in [6, 18] assumes agreement
on click-through rates, there are many reasons why disagreement might arise. Clicks
on ads are low probability events and their rate of arrival can be very hard to es-
timate [17]. Even for ads with a long history of impressions, estimates may diverge



because of click fraud, a practice whereby an advertiser clicks on a competitor’s ad in
order to deplete the latter’s budget [8, 12]. If the advertiser and auctioneer differ on
which clicks were fraudulent, their click-through rate estimates would then also differ.

The hybrid auction of Goel and Munagala [7] is a notable departure from the basic
sponsored search model in that it attempts to reconcile differing publisher and ad-
vertiser click-through estimates. In a hybrid auction advertisers place per-click bids
as well as per-impression bids, and the auctioneer then chooses one of the two pric-
ing schemes. Goel and Munagala [7] show that, besides being truthful, their hybrid
auction has many advantages over simple per-click keyword auctions. The auction
allows advertisers to take into account their attitudes towards risk and may generate
higher revenue, among other nice properties. The consistency condition given in this
work distills the reason behind truthfulness in the hybrid auction, and our contract
auction leads to variants and generalizations of the hybrid auction to multiple pricing
schemes beyond CPC and CPM (e.g., CPA for any kind of action).

Although our motivation is sponsored search, contract auctions also find potential ap-
plications in display advertising. This market includes a variety of different advertisers
ranging from brand to direct marketers. Consequently, ad networks typically offer a
variety of different pricing schemes including CPM, CPC, and CPA [5]. Amer-Yahia
et al. [2] and Boutilier et al. [3] discuss bidder preferences in display advertising.

2 Contract Auctions

We define and develop an incentive compatible mechanism for contract auctions where
agents have valuations over an arbitrary space of possible contracts. Suppose there
are N agents A1, . . . , AN and finite sets C1, . . . , CN that denote the set of potential
contracts each agent could enter into. Agents have valuation functions vi : Ci 7→ R
for their respective contracts, and the auctioneer’s value for each contract is given by
vAi : Ci 7→ R. Contracts, in this setting, are nothing more than abstract objects for
which each party has a value. The auctioneer is to enter into a single contract, and
our goal is to design a framework to facilitate this transaction.

The valuation functions are intended to represent purely subjective utilities, based, for
example, on private beliefs or simply taste. In this sense, each agent values contracts in
their own “currency,” which cannot directly be converted into values for other agents.
We require that preferences be consistent in the following sense: Among contracts
acceptable to a given bidder (i.e., those contracts for which the bidder has non-
negative utility), the highest value contract to the auctioneer is one for which the
bidder has zero utility. This statement is formalized by Definition 1.

Definition 1. In the setting above, we say agent vi and the auctioneer have consis-
tent valuations if for each c1 ∈ Ci with vi(c1) > 0, there exists c2 ∈ Ci such that
vi(c2) ≥ 0 and vAi (c2) > vAi (c1).

Consistency is equivalent to the following property:

max
{c:vi(c)≥0}

vAi (c) > max
{c:vi(c)>0}

vAi (c).

We note that consistency is a weak restriction on the structure of valuations. In par-
ticular, if contracts include a “common currency” component, for which bidders and



the auctioneer have an agreed upon value, then valuations are necessarily consistent.

Under this assumption of consistency, Mechanism 1 defines a dominant strategy
incentive-compatible mechanism for contract auctions. First, bidders report their
valuation function to the auctioneer. In the applications we consider, this entails
reporting a small set of parameters which defines the valuation function over the en-
tire contract space. Next, among contracts for which agents have non-negative utility
(i.e., “acceptable” or “individually-rational” contracts), the auctioneer identifies the
contract for which it has maximum value; the winner of the auction is the bidder who
submitted this maximum value acceptable contract. Finally, the auctioneer and the
winner enter into the best contract from the winner’s perspective for which it would
have still won the auction.

Mechanism 1 A General Contract Auction
1: Each agent A1, . . . , AN reports a valuation function ṽi.
2: For 1 ≤ i ≤ N , let Si = {c ∈ Ci | ṽi(c) ≥ 0} be the set of contracts for which agent Ai claims to

have non-negative valuation, and define

Ri = max
Si

vAi (c) (1)

to be the maximum value the auctioneer can achieve from each agent among these acceptable
contracts.

3: Fix h so that Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N), and let

S =
n

c ∈ Ch(1)

˛̨̨
vA

h(1)(c) ≥ Rh(2)

o
.

With agent Ah(1), the auctioneer enters into any contract c∗ such that

c∗ ∈ arg max
S

ṽh(1)(c).

Theorem 1. In the setting above, suppose agents have consistent valuations. Then
Mechanism 1 is dominant strategy incentive compatible.

Proof. Fix an agent Ai and consider its strategy. Let R−i = maxj 6=i Rj where Rj is
defined as in (1). If Ai were to win the auction, then it would necessarily enter into
a contract among those in the set

Mi =
n

c ∈ Ci

˛̨̨
vAi (c) ≥ R−i

o
.

Suppose Ai has strictly positive valuation for some contract c1 ∈Mi (i.e., maxMi vi(c) >
0). Then by the assumption of consistent valuations, there exists a contract c2 such
that vi(c2) ≥ 0 and

vAi (c2) > vAi (c1) ≥ R−i.

In particular, if Ai truthfully reports its valuation function, then we would have
Ri ≥ vAi (c2) > R−i, and hence Ai would win the auction. Furthermore, in this case
the best Ai could do is to enter into a contract in the set arg maxMi

vi(c). Again,
truthful reporting ensures that this optimal outcome occurs.



Now suppose maxMi vi(c) ≤ 0. In this case Ai has no possibility of positive gain,
whether or not it wins the auction. However, by reporting truthfully, if Ai does win
the auction the final contract would be selected from the set Si = {c ∈ Ci | vi(c) ≥ 0}.
That is, truthful reporting ensures that Ai achieves (the optimal) zero gain. �

We next show that the consistency condition plays a crucial role in achieving incen-
tive compatibility by exhibiting an example with inconsistent valuations where truth
telling is not a dominant strategy. Suppose the auctioneer has one item for sale and
there are two agents Ai and Aj . Agent Ai, Irene, values the item at $4 but only
has $2 to spend. There are three contracts she can enter into, ci

1, c
i
2, c

i
3, intuitively

buying the item for $1, $2, and $3, resulting in utilities of 3, 2, and −1, the latter
being negative since Irene has a limited budget of $2. Agent Aj , Juliet, values the
item at $2 and has $2 to spend. She can enter into three similar contracts, cj

1, c
j
2 and

cj
3, resulting in utilities of 1, 0 and −1 respectively. From the auctioneer’s point of

view, his utility is the revenue, vA(ci
x) = vA(cj

x) = x for any x ∈ {1, 2, 3}.

If the agents report their valuations truthfully, then Ri = Rj = 2 and the auctioneer
must break the tie. Unless the tie is broken deterministically in favor of Irene, she has
an incentive to lie. Suppose she reports her valuation for ci

3, as vi(c
i
3) = 1, pretending

that she has enough money to afford the item. In that case Ri = 3, and Rj = 2, so
Irene wins the item; but she can select any outcome so long as the auctioneer’s utility
is at least Rj = 2. She chooses ci

2, which has a positive utility to her, but still makes
$2 for the auctioneer. Essentially, because the utilities of Irene and the auctioneer are
not consistent, Irene can bluff to always win the item.

Remark 1. In the above we have assumed the contract spaces Ci are finite. This
restriction is imposed only to ensure the maximum operation is well-defined in Mech-
anism 1. We implicitly relax this condition in the following discussion, as it is clear
the maxima exist despite having infinite contract spaces.

Mechanism 1 generalizes the usual sealed-bid second-price auction. To see this, take
Ci = R, and let the contract p ∈ R indicate agent Ai’s obligation to purchase the
auctioned good at price p. If agent Ai values the good at wi, then its value over
contracts is given by vi(p) = wi − p, and in particular, its preferences over contracts
is parametrized by wi ∈ R. The auctioneer has valuation vAi (p) = p. Now, letting w̃i

be Ai’s reported valuation, we have Ri = w̃i. Furthermore,

S =
n

c ∈ Ch(1)

˛̨̨
vA

h(1)(c) ≥ Rh(2)

o
=
ˆ
w̃h(2),∞

´
and so arg maxS ṽh(1) = w̃h(2). That is, agent Ah(1) enters into the contract w̃h(2),
agreeing to pay the second highest bid for the good.

3 The Impression-Plus-Click Pricing Model

We now consider a specific application of contract auctions for sponsored search:
impression-plus-click pricing. For a given impression, define a contract (rs, rf ) ∈ R2

to require the advertiser pay rs if a click occurs and rf if no click occurs. This
is a complete pricing scheme if the advertiser values only impressions and clicks.
We note that so-called “brand advertisers” often have significant utility for simply
displaying their ads, regardless of whether or not their ads are clicked. These contracts
are equivalently parametrized by (rm, rc) ∈ R2, where the advertiser pays rm per
impression and an additional rc per click. Using this latter, additive, notation, an
impression-plus-click (IPC) contract is represented as point in the CPM-CPC price
plane. A priori there are no restrictions on these prices (e.g., one or both coordinates
could be negative).



3.1 Contract Preferences

Suppose an advertiser Ai values an impression, regardless of whether it receives a
click, at mi ≥ 0, values a click at wi ≥ 0, and estimates its CTR to be pi > 0. Then,
assuming risk neutrality, its value for the IPC contract (rm, rc) is

vi(rm, rc) = (mi + piwi)− (rm + pirc).

Observe that the contract preferences of Ai are equivalent to those of an advertiser
who values clicks at wi + mi/pi and has no inherent value for impressions. Conse-
quently, without loss of generality, we need only consider the case mi = 0. We thus
have the simplified expression

vi(rm, rc) = piwi − (rm + pirc).

The level curves of vi are linear with slope −1/pi:

{(rm, rc) : vi(rm, rc) = C} = {(rm, K − rm/pi) : rm ∈ R} (2)

where K = wi − C/pi.

We suppose the advertiser requires limited liability in the following sense. For adver-
tiser specific constants CPMi > 0 and CPCi > 0, we assume the advertiser has strictly
negative utility for any contract (rm, rc) with either rm > CPMi or rc > CPCi; aside
from this caveat, the advertiser is risk-neutral. In other words, advertisers effectively
have a maximum amount they are willing to spend on clicks and impressions, but
otherwise they are risk neutral.

The utility function of each advertiser Ai can be derived from four numbers: its value-
per-click wi, its estimated CTR pi, and its price caps CPMi and CPCi. Equivalently,
Ai’s utility function is determined by the two contracts

{(ri
m, CPCi), (CPMi, r

i
c)}

where ri
m = pi(wi − CPCi) and ri

c = wi − CPMi/pi. These two IPC contracts lie on
Ai’s zero-utility level line; that is,

vi(r
i
m, CPCi) = 0 vi(CPMi, r

i
c) = 0.

Moreover, these contracts are the most “extreme” points on this zero-utility line
(i.e., they push up against the price caps). Observe that wi is the y-intercept of
the line through these two contract points, and pi =

`
CPMi − ri

m

´
/
`
CPCi − ri

c

´
is

the negative reciprocal of the slope of this line. Furthermore, the space of advertiser
utility functions is parametrized by the set of contract pairs

U = {(rm,1, rc,1), (rm,2, rc,2) | rm,1 ≤ 0 < rm,2, rc,2 ≤ 0 < rc,1} . (3)

From the (risk-neutral) publisher’s perspective, the utility of a contract (rm, rc) en-
tered into with advertiser Ai is

vAi (rm, rc) = rm + pA
i rc

where pA
i is the publisher’s estimated CTR of the advertiser’s ad. Figure 1 illustrates

the contract preferences for an advertiser and a publisher.
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Fig. 1. The solid black lines indicate level curves of an advertiser’s price preferences in the CPM-
CPC price plane. The red lines indicate the corresponding level curves for a publisher whose esti-
mated CTR for an ad is lower than the advertiser’s own estimate.

3.2 Designing the Impression-Plus-Click Auction
Given the advertiser and publisher preferences outlined in Section 3.1, we next ap-
ply Theorem 1 to design a dominant strategy incentive compatible IPC auction for
sponsored search. We start with two preliminary lemmas.

Lemma 1. Assume the setting and notation of Mechanism 1, and the advertiser and
publisher preferences of Section 3.1. Then the agents have consistent valuations with

the publisher. Furthermore, letting
n

(r̃i
m, C̃PCi), (C̃PMi, r̃

i
c)
o

denote Ai’s reported

preferences, we have

Ri =

(
C̃PMi + pA

i r̃i
c if pA

i ≤ p̃i

r̃i
m + pA

i C̃PCi if pA
i ≥ p̃i

where p̃i =
“

C̃PMi − ri
m

”
/
“

C̃PCi − ri
c

”
is Ai’s inferred (subjective) CTR.

Proof. The level curve L0 on which the advertiser has (true) zero utility is given by
the line segment

L0 = {(rm, rc) | rm + pirc = piwi, rm ≤ CPMi, rc ≤ CPCi}
= {(rm, wi − rm/pi) | pi(wi − CPCi) ≤ rm ≤ CPMi}

and the set Si on which the advertiser has non-negative utility is given by the points
below L0:

Si = {(rm, rc) | ∃ (r∗m, r∗c ) ∈ L0 such that rm ≤ r∗m and rc ≤ r∗c} .

If (rm, rc) ∈ Si \ L0 (i.e., if vi(rm, rc) > 0), then there exists (r∗m, r∗c ) ∈ L0 such that
either r∗m > rm or r∗c > rc. In either case, vAi (r∗m, r∗c ) > vAi (rm, rc), and so Ai and
the publisher have consistent valuations.

To compute Ri, we first assume agent Ai truthfully reports its preferences. Consistent
valuations implies that the publisher achieves its maximum value, among contracts
in Si, on the set L0 where the advertiser has zero utility. For (rm, rc) ∈ L0,

vAi (rm, rc) = rm + pA
i rc

= rm + (wi − rm/pi)p
A
i

= wip
A
i + rm

“
1− pA

i /pi

”
. (4)



Now note that (4) is an increasing function of rm for pi < pA
i , and a decreasing

function of rm for pi > pA
i . Consequently, the maximum is achieved at the endpoints

of L0. To extend to the case were Ai does not necessarily report truthfully, we need
only replace A’s actual preferences with its reported preferences, as indicated by the
tildes. �

Lemma 2. Assume the setting and notation of Lemma 1. Fix 1 ≤ i ≤ N and R∗ ≤
Ri. Then for

S =
n

(rm, rc) ∈ Ci

˛̨̨
vAi (rm, rc) ≥ R∗

o
we have

arg max
S

ṽi(rm, rc) =

8>><>>:
“

C̃PMi, (R∗ − C̃PMi)/pA
i

”
if pA

i < p̃i“
R∗ − pA

i C̃PCi, C̃PCi

”
if pA

i > p̃i

T if pA
i = p̃i

where
T =

n“
rm, (R∗ − rm)/pA

i

” ˛̨̨
R∗ − pA

i C̃PCi ≤ rm ≤ C̃PMi

o
.

Proof. First note that since R∗ ≤ Ri, maxS ṽi ≥ 0. Now, the level curve LA on which
vAi (rm, rc) = R∗ is given by

LA =
n

(rm, rc)
˛̨̨
rm + pA

i rc = R∗
o

=
n“

rm, (R∗ − rm)/pA
i

” ˛̨̨
rm ∈ R

o
.

Furthermore, vAi (rm, rc) > R∗ if and only if (rm, rc) lies above this line. That is,
vAi (rm, rc) > R∗ if and only if there exists a contract (r∗m, r∗c ) ∈ LA such that either
rm ≥ r∗m and rc > r∗c , or rm > r∗m and rc ≥ r∗c . In either case, ṽi(r

∗
m, r∗c ) > ṽi(rm, rc)

and so arg maxS ṽi ⊆ LA. Since maxS ṽi ≥ 0, we can further restrict ourselves to the
set

T = LA ∩ (−∞, C̃PMi]× (−∞, C̃PCi]

=
n“

rm, (R∗ − rm)/pA
i

” ˛̨̨
R∗ − pA

i C̃PCi ≤ rm ≤ C̃PMi

o
.

For (rm, rc) ∈ T , and w̃i indicating Ai’s inferred value per click, we have

ṽi(rm, rc) = w̃ip̃i − [rm + p̃irc]

= w̃ip̃i −
h
rm + (R∗ − rm)p̃i/pA

i

i
= w̃ip̃i −R∗p̃i/pA

i + rm

“
p̃i/pA

i − 1
”

. (5)

The result now follows by noting that (5) is increasing in rm for pA
i < p̃i, decreasing

for pA
i > p̃i, and constant for pA

i = p̃i. �

Together with Lemmas 1 and 2, the general contract auction of Mechanism 1 leads
to the impression-plus-click auction described by Mechanism 2. First, each advertiser
submits two contracts—ostensibly specifying its entire utility function. The publisher
then computes its own utility for each of these 2N contracts, and the winner of the
auction is the agent who submitted the contract with the highest value to the pub-
lisher. The “second-highest value” is the value of the best contract (again from the
publisher’s perspective) among those submitted by the losing bidders. To determine



the actual contract entered into, we consider two cases. If the highest value contract
has higher CPM than the winner’s other bid, then the final contract is determined
by decreasing the CPC on the highest value contract until the publisher’s value for
that contract is equal to the second highest value. Analogously, if the highest value
contract has lower CPM than the winner’s other bid, the final contract is determined
by decreasing the CPM of the highest value contract. Determination of the final con-
tract is illustrated in Figure 2.

Mechanism 2 An Impression-Plus-Click Auction
1: Advertisers A1, . . . , AN each report their valuation functions, encoded by the pair of extremal

contracts as described in Section 3.1:

ṽi =
n“

ri
m,1, r

i
c,1

”
,
“
ri

m,2, r
i
c,2

”o
where ri

m,1 ≤ 0 < ri
m,2 and ri

c,2 ≤ 0 < ri
c,1.

2: For each report ṽi define

Ri = max
“
vAi

“
ri

m,1, r
i
c,1

”
, vAi

“
ri

m,2, r
i
c,2

””
= max

“
ri

m,1 + ri
c,1p

A
i , ri

m,2 + ri
c,2p

A
i

”
.

3: Fix h so that
Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N).

The publisher enters into a contract with agent Ah(1). The final contract c∗ is determined as
follows:

c∗ =

8><>:
“
r

h(1)
m,2 ,

“
Rh(2) − r

h(1)
m,2

”.
pA

h(1)

”
if Rh(1) = vA

h(1)

“
r

h(1)
m,2 , r

h(1)
c,2

”
“
Rh(2) − pA

h(1)r
h(1)
c,1 , r

h(1)
c,1

”
otherwise

Theorem 2. Consider the setting and notation of Mechanism 2 with the advertiser
and publisher preferences of Section 3.1. Then

1. c∗ ≤
“
r

h(1)
m,1 , r

h(1)
c,1

”
or c∗ ≤

“
r

h(1)
m,2 , r

h(1)
c,2

”
, where the inequalities hold coordinate-

wise.
2. The mechanism is dominant strategy incentive compatible. That is, it is a domi-

nant strategy for each advertiser Ai to truthfully reportn“
ri

m, CPCi

”
,
“

CPMi, r
i
c

”o
.

4 The Impression-Or-Click Pricing Model

With impression-plus-click pricing, advertisers pay publishers for each impression, and
then pay an additional amount if their ad is clicked. The hybrid sponsored search auc-
tion of Goel & Munagala [7] can be thought of as impression-or-click (IOC) pricing.
That is, the final selected contract is guaranteed to be either pure per-impression or
pure per-click, but it is not known which it will be until all bids have been submitted.
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Fig. 2. Settling the impression-plus-click auction. The final contract is determined by decreasing
either the CPM or the CPC (but not both) of the highest value contract to the publisher.

The hybrid auction, as shown below, is equivalent to a special case of the general
contract auction with the contract spaces restricted to the axes of the CPM-CPC
plane:

Ci = {(rm, 0) | rm ∈ R} ∪ {(0, rc) | rc ∈ R}. (6)

Suppose both advertisers and publishers are risk neutral. As before, let pi denote
advertiser Ai’s subjective click-through rate, let pA

i denote the publisher’s estimated
click-through rate for an impression awarded to Ai, and let wi denote Ai’s value for
a click.1 Then Ai has zero utility for the two contracts (piwi, 0) and (0, wi). By the
assumption of risk neutrality, these two contracts completely determine Ai’s prefer-
ences over all contracts. Hence, Ai can communicate its preferences by reporting the
two numbers CPMi = piwi and CPCi = wi, corresponding to the maximum it is
willing to pay for a per-impression and a per-click contract, respectively. The result-
ing IOC auction is outlined in Mechanism 3, and details of its derivation are left to
the Appendix.2

Mechanism 3 An Impression-Or-Click Auction (Goel & Munagala)
1: Advertisers A1, . . . , AN each report their valuation functions, encoded by the constants

C̃PM i, C̃PCi > 0.
2: For each report, define

Ri = max
“

CPMi, pA
i CPCi

”
.

3: Fix h so that
Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N).

Then the publisher enters into a contract with agent Ah(1). The final contract c∗ is determined
as follows:

c∗ =

(`
0, R∗/pA

i

´
if Rh(1) = pA

h(1)CPCh(1)

(R∗, 0) otherwise

1 As before, without loss of generality we may assume advertisers have no inherent value for
impressions that are not clicked.

2 The hybrid auction [7] requires only that C̃PM i, C̃PCi ≥ 0; for simplicity, however, we restrict
to strict inequality.



Although the hybrid and general contract auctions are equivalent when advertiser
preferences are restricted to the CPM-CPC axis, they may lead to different outcomes
when preferences are defined over the entire plane. Consider the IPC auction setting
of Section 3, where we now assume that CPCi = wi and CPMi = wipi. That is, the
most advertiser Ai is willing to pay per click or per impression is, respectively, its true
per click value wi and its true per impression value wipi. In particular, Ai will not
pay more than wi per click even if it is compensated via negative per-impression pay-
ments. In this case, the two extremal contracts that define Ai’s utility function over
the CPM-CPC plane are (CPMi, 0) and (0, CPCi). With such a preference profile, we
show that advertisers prefer the IPC auction over the IOC auction, and publishers
are ambivalent between the two.

In both the IOC and IPC auctions, it is dominant to truthfully reveal ones’ pref-
erences: In the IOC auction advertisers report their maximum per-impression and
per-click payments CPMi and CPCi; in the IPC auction they report their pair of ex-
tremal contracts {(CPMi, 0), (0, CPCi)}. From the publisher’s perspective, for each
agent Ai, Ri is the same in both auctions. Consequently, the winner of the auction is
the same under either mechanism, and moreover, the expected (subjective) revenue
R∗ of the publisher is also the same. The publisher is thus ambivalent between the
IOC and IPC auction designs.

From the advertisers’ view, however, the situation is quite different. Specifically, let
c∗IPC and c∗IOC denote the final contract entered into by the winner Ah(1) under each
mechanism. Then

vh(1)(c
∗
IPC) = max

Q1
vh(1) vh(1)(c

∗
IOC) = max

Q2
vh(2)

where

Q1 =
n

(rm, rc) ∈ R2
˛̨

vA
h(1)(rm, rc) ≥ R∗

o
Q2 =

n
(rm, rc) ∈ R2

˛̨
vA

h(1)(rm, rc) ≥ R∗, min(rm, rc) = 0
o

That is, the IPC contract is optimized over the entire plane, whereas the IOC con-
tract is optimized only over the axes. In particular, vh(1)(c

∗
IPC) ≥ vh(1)(c

∗
IOC). Since

vAi (c∗IPC) = vAi (c∗IOC), the line drawn between these two contracts has slope −1/pA
i

(as shown in Section 3.1). Furthermore, since vi(c
∗
IPC) = vi(c

∗
IOC) if and only if the

line between the contracts has slope −1/pi, we have vh(1)(c
∗
IPC) > vh(1)(c

∗
IOC) pro-

vided that pA
i 6= pi. Hence, in this setting, advertisers typically prefer the IPC over

the IOC auction.

The distinction between the IPC and IOC settlement mechanisms is illustrated in
Figure 3. When pA

h(1) < ph(1), the publisher prefers (under both mechanisms) the
winning advertiser’s pure per-impression bid CPMh(1) over its pure per-click bid
CPCh(1). In this case, the final IOC contract is a pure per-impression contract, where
the per-impression payment is reduced from CPMh(1) to an amount such that the
ultimate value of the contract to the publisher is R∗. In contrast, the final IPC
contract has the advertiser still paying CPMh(1) per impression, but a “discount”
is given to the advertiser via negative click payments (i.e., the publisher pays the
advertiser for each click). This negative click payment is calculated so that the final
value of the contract to the publisher is again R∗. The final contract in either auction
lies on the R∗ level curve of the publisher: In the IOC auction, the pure-impression
contract CPMh(1) is moved left along the CPM axis until hitting this level curve;



in the IPC auction, the final contract is arrived at by moving the pure-impression
contract down parallel to the CPC axis.3

CPC

CPM

Fig. 3. The IOC and the IPC auctions arrive at a final contract by moving along different axes
in the CPM-CPC plane. The star indicates a winning pure per-impression bid, the red line is the
publisher’s R∗ level line, and the two dots indicate the final contracts under each auction mechanism.

5 Discussion

General contract auctions facilitate transactions when parties have conflicting infor-
mation, or when they simply have different inherent value for the specific terms of a
contract. Such a situation is common in traditional business negotiations, and, at least
implicitly, contracts in the offline world often balance the same tradeoffs encapsulated
explicitly by impression-plus-click auctions. For example, with book publication, au-
thors typically receive a one-time advance plus royalty fees (i.e., a percentage of total
sales revenue). Thus, authors confident in the future success of their book should
be willing to trade a smaller advance for larger royalties. A similar tradeoff occurs
with insurance premiums and deductibles: A driver who thinks he is unlikely to get
into an accident should be willing to accept relatively high deductibles in exchange
for relatively low premiums. Executives also face a similar situation when deciding
between guaranteed salaries and performance-based bonuses.

As with impression-plus-click sponsored search pricing, negative payments are poten-
tially applicable in the offline world as well. For example, one may be willing to pay
a high premium for earthquake insurance in exchange for a “disaster bonus.” Anal-
ogously, an author may be willing to pay to have their book published in exchange
for an especially high percentage of the revenue.

In such instances where parties bargain between deterministic and stochastic pay-
ments, a design similar to the impression-plus-click auction may prove useful.

3 When pA
h(1) > ph(1) the situation is reversed: The pure click contract is preferred by the auction-

eer; the IOC auction selects the final contract by moving down along the CPC axis until hitting
the publisher’s R∗ level line; and the IPC auction hits this level line by moving left parallel to
the CPM axis, corresponding to negative impression payments.
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A Technical Details and Proofs

Proof of Theorem 2.

Proof. First observe that both possible final contracts have value Rh(2) to the pub-
lisher. Consequently,

vA
h(1)(c

∗) ≤ Rh(1) = max
“
vA

h(1)

“
r

h(1)
m,1 , r

h(1)
c,1

”
, vA

h(1)

“
r

h(1)
m,2 , r

h(1)
c,2

””
.

If Rh(1) = vA
h(1)

“
r

h(1)
m,2 , r

h(1)
c,2

”
, then we have

vA
h(1)

“
r

h(1)
m,2 , c∗c

”
≤ vA

h(1)

“
r

h(1)
m,2 , r

h(1)
c,2

”
where c∗c is the cost per click in the final contract c∗. By monotonicity of vA

h(1),

c∗c ≤ r
h(1)
c,2 . When Rh(1) 6= vA

h(1)

“
r

h(1)
m,2 , r

h(1)
c,2

”
, an analogous argument shows that

c∗ ≤
“
r

h(1)
m,1 , r

h(1)
c,1

”
.

To establish incentive compatibility, note that by Lemma 1 the variable Ri as de-
fined in Mechanism 2 indeed corresponds to the variable of the same name in the
general contract auction described in Mechanism 1 (i.e., Ri is the value of the best
contract—from the perspective of the publisher—for which the advertiser reports to
have non-negative utility). Moreover, Lemma 1 shows that if Ri is achieved on Ai’s
“rightmost” contract (i.e., its contract with higher CPM), then pA

i ≤ p̃i. In this case,
by Lemma 2, Ai reportedly prefers the contract ultimately chosen by the mechanism.
The analogous result holds when Ri is achieved on the “leftmost” contract. �

To describe the impression-or-click auction, where the contract spaces are given by
(6), we derive analogs of Lemmas 1 and 2.

Lemma 3. Consider the setting and notation of Mechanism 1 with contract spaces
given by (6), and risk-neutral advertisers and publishers. Then the agents have consis-

tent valuations with the publisher. Furthermore, letting C̃PMi and C̃PCi denote Ai’s

reported preferences, and p̃i = C̃PMi/C̃PCi its inferred (subjective) click-through rate,
we have

Ri =

(
C̃PMi if pA

i ≤ p̃i

pA
i C̃PCi if pA

i ≥ p̃i

Proof. To show consistency, observe that Ai has strictly positive value if and only if
the contract is in the set H1 ∪H2 where

H1 = {(r, 0) | r < CPMi} H2 = {(0, r) | r < CPCi}.

Now, vi((CPCi, 0)) = vi((0, CPMi)) = 0, and maxH1 vAi (c) < vAi ((CPMi, 0)) and
maxH2 vAi (c) < vAi ((0, CPCi)). From this consistency follows.

To compute Ri, we first assume Ai truthfully reports its preferences. By consistency,
Ri is attained on the set {(CPMi, 0), (0, CPCi)}, and in particular, vAi ((CPMi, 0)) =
CPMi and vAi ((0, CPCi)) = pA

i CPCi. Thus,

Ri =

(
CPMi if pA

i ≤ pi

pA
i CPCi if pA

i ≥ pi



For the general case, where Ai does not necessarily report truthfully, we replace its

true values CPMi and CPCi with its reported values C̃PMi and C̃PCi, and use the
derived click-though rate p̃i instead of Ai’s own true (subjective) click-through rate
pi. �

Lemma 4. Consider the setting and notation of Lemma 3. Fix 1 ≤ i ≤ N and
R∗ ≤ Ri. Then for

S =
n

(rm, rc) ∈ Ci | vAi (rm, rc) ≥ R∗
o

we have

arg max
S

ṽi(rm, rc) =

8><>:
(R∗, 0) if pA

i < p̃i

(0, R∗/pA
i ) if pA

i > p̃i˘
(R∗, 0), (0, R∗/pA

i )
¯

if pA
i = p̃i

where p̃i = C̃PMi/C̃PCi is inferred from agent Ai’s report.

Proof. Observe that S can be re-written as

S = {(r, 0) | r ≥ R∗} ∪ {(0, r) | r ≥ R∗/pA
i }.

Then the max of ṽi over S is attained on the boundary points {(R∗, 0), (0, R∗/pA
i )}.

The result follows by observing that ṽi((R∗, 0)) = C̃PCi −R∗ and ṽi

``
0, R∗/pA

i

´´
=

C̃PCi −R∗pi/pA
i . �

Analogous to the proof of Theorem 2, Lemmas 3 and 4 together with Mechanism 1
yield the hybrid auction of Goel & Munagala [7] described in Mechanism 3.


