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Abstract

We present the design and analysis of an approximately
incentive-compatible combinatorial auction. In just a sin-
gle run, the auction is able to extract enough value infor-
mation from bidders to compute approximate truth-inducing
payments. This stands in contrast to current auction designs
that need to repeat the allocation computation as many times
as there are bidders to achieve incentive compatibility. The
auction is formulated as a kernel method, which allows for
flexibility in choosing the price structure via a kernel func-
tion. Our main result characterizes the extent to which our
auction is incentive-compatible in terms of the complexity
of the chosen kernel function. Our analysis of the auction’s
properties is based on novel insights connecting the notion
of stability in statistical learning theory to that of universal
competitive equilibrium in the auction literature.

Introduction
The purpose of an auction is typically to determine an ef-
ficient allocation of resources. To achieve this, the auction
must not only compute the value maximizing allocation, but
also incentivize buyers to truthfully report their values so
that the maximization is performed over the right objec-
tive. In the process of computing an efficient allocation,
auctions—especially iterative auctions—often derive clear-
ing prices that balance supply and demand. However, when
one deals with combinatorial auctions over multiple items,
these prices may not induce truthful reporting. Instead, one
must perform further computation to obtain truth-inducing
payments. Due to a variety of appealing properties, the
Vickrey-Clarke-Groves (VCG) payment scheme is often the
method of choice to achieve incentive compatibility (Clarke
1971; Groves 1979; Vickrey 1961).

This situation has led to much research into combinatorial
auctions that derive VCG payments as a by-product of the
allocation and clearing process, and into characterizations
of the conditions under which prices can match VCG pay-
ments. Bikhchandani and Ostroy (2002) demonstrate that
the latter is the case when valuations satisfy a substitutes
condition. Ausubel (2006) and de Vries et al. (2007) de-
velop linear and nonlinear price iterative auctions that com-
pute VCG payments under this substitutes condition. Mishra
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and Parkes (2007) develop an ascending-price iterative auc-
tion for general valuations that terminates with sufficient in-
formation to compute VCG payments.

The sealed-bid VCG mechanism itself can be run to com-
pute incentivizing payments. This requires solving the al-
location problem once with all buyers present and n more
times each with one agent removed, where n is the number
of agents, for an n-fold increase in computation over sim-
ple efficient allocation. In fact, all the auctions mentioned
above also introduce an n-fold increase in computation, ei-
ther implicitly or explicitly, by requiring multiple price paths
or increasing the computation in each round—their advan-
tages lie not in their computational savings but elsewhere
(e.g., ascending prices, incremental elicitation). The ques-
tion of how much increase in computation is needed to com-
pute VCG payments goes back to the work of Nisan and
Ronen (1999), who posed it specifically in the context of
routing on a network.

In this work, we study the extent to which clearing prices
computed by an auction can capture the information needed
to derive VCG payments after just a single run of the al-
location process. We adapt the original formulation of the
combinatorial allocation problem given by Bikhchandani
and Ostroy (2002) in two ways, drawing on ideas from
kernel methods in machine learning. First, following La-
haie (2009), we introduce some flexibility in the choice of
price structure via a kernel function that specifies how bun-
dles are priced. Second, we introduce a penalty term on the
magnitude of the clearing prices, akin to a regularization
term in machine learning. This formulation of the alloca-
tion problem can form the basis of single-shot or iterative
combinatorial auctions, using standard techniques from the
literature (Bikhchandani et al. 2001).

Our main result characterizes how well VCG payments
can be approximated using the price information computed
by our auction formulation, in terms of the price structure
and penalty term. Our analysis draws a connection between
the notion of stability (Bousquet and Elisseeff 2002) in sta-
tistical learning theory and the notion of a universal com-
petitive equilibrium (Mishra and Parkes 2007) in the auction
literature. Informally, stability ensures that a learning algo-
rithm is not too sensitive to any particular input in the train-
ing data, so that the algorithm can therefore avoid overfitting
and generalize well. Under a universal competitive equilib-



rium, the clearing prices remain clearing even if an agent
is removed; thus, the prices are not sensitive to the pres-
ence of any one agent. This does not mean that we achieve
incentive-compatibility with such prices, but that they cap-
ture an agent’s marginal contribution to the economy, which
is the information needed to compute VCG payments.

The remainder of the paper is organized as follows. We
first present the model, explaining the distinction between
prices and payments in auctions. We then provide our
kernel-based auction formulation. The following section
contains our results, connecting the concepts of stability,
universal competitive equilibrium, VCG payments, and in-
centive compatibility. We conclude with a discussion of our
bounds and avenues for future research.

The Model
There are n buyers and m distinct indivisible items held by
a single seller. A bundle is a subset of the items. We as-
sociate each bundle with its indicator vector, and denote the
set of bundles by X = {0, 1}m. We write x ≤ x′ to de-
note that bundle x is contained in bundle x′ (the inequality
is understood component-wise).

Buyer i has a value function vi : X → R+ denoting
how much it is willing to pay for each bundle. For the sake
of simplicity, we assume that each buyer is single-minded,
meaning that there is a bundle xi such that vi is entirely de-
termined by the bundle-value pair (xi, vi(xi)) as follows:

vi(x) =
{
vi(xi) if x ≥ xi

0 otherwise
with the requirement that vi(∅) = 0. In words, buyer i
would like to acquire all the items in bundle xi, but is not
interested in any others.1

A selection of buyers is simply a subset I ⊆ {1, . . . , n}.
A selection if feasible if

∑
i∈I xi ≤ 1; this means that the

desired bundles of the buyers in the selection do not inter-
sect. We denote the set of feasible selections by F . A se-
lection I is efficient if I ∈ arg maxI′∈F

∑
i∈I′ vi(xi). In

this paper we will typically denote the allocation of items
corresponding to a selection by a vector of bundles y =
(y1, . . . , yn), where yi is the bundle acquired by buyer i; we
have yi = xi if i ∈ I and yi = 0 otherwise. Together with
an efficient selection, we wish to determine transfers from
the buyers to the auctioneer. Transfers can serve different
purposes.

Prices In the first instance, transfers are specified as prices
p : X → R defined over bundles; we will assume that prices
are normalized so that p(0) = 0. The purpose of prices is
to balance supply and demand. Prices are competitive with
respect to a selection I if the following conditions hold:

vi(xi)− p(xi) ≥ 0 for i ∈ I
vi(xi)− p(xi) ≤ 0 for i 6∈ I∑

i∈I p(xi) ≥
∑
i∈I′ p(xi) for all I ′ ∈ F

1All our results extend to arbitrary valuations over bundles, but
the auction formulation and analysis would be needlessly complex.
Only Lemma 1 would have to be generalized, the remaining proofs
would remain unchanged.

This means that each buyer in the selection willingly ac-
quires its associated bundle, the other buyers willingly re-
ceive nothing, and the selection maximizes the seller’s rev-
enue. In this sense, the prices balance supply and demand,
assuming the agents act as pure price-takers. If prices p are
competitive with respect to a selection I , we say that they
support the selection and the associated allocation y.

It is well-known that if prices p are competitive with re-
spect to a selection, then the selection is efficient (Bikhchan-
dani and Ostroy 2002). It is also known that with single-
minded bidders, competitive prices exist to support any effi-
cient selection (Lahaie and Parkes 2009); however, existence
may not hold if we impose a specific structure on the prices,
such as linearity.2 Part of our goal in designing our auction
is to allow for flexibility in the price structure, in order to
study the interplay between price structure and incentives.

Payments In the second instance, transfers are specified
as payments q = (q1, . . . , qn) ∈ Rn from the buyers to the
seller. The purpose of payments is to align the buyers’ incen-
tives with that of efficiency. A rational buyer will realize that
both the selection and its payment in an auction will depend
on the value function it reports, and will therefore choose its
report to maximize its own surplus (i.e., it may lie about its
value function), where surplus refers to value minus price.
We seek a payment rule such that an agent’s potential gain
from misreporting its value is small.

Formally, let (y, q) be the allocation and payments com-
puted by the auction when buyer h reports its value func-
tion truthfully, holding the other buyers’ values fixed, and
let (y′, q′) be the allocation and payments computed when it
reports some other value function. The auction is ε-incentive
compatible (in dominant strategies), where ε ≥ 0, if it is al-
ways the case that

vh(yh)− qh + ε ≥ vh(y′h)− q′h.
If ε is not explicitly mentioned, it is implied that ε = 0.
A natural approach would be to charge qi = p(yi) for
each buyer i, but with general or even single-minded val-
uations this may not be ε-incentive compatible for any small
ε (Ausubel and Milgrom 2006), no matter what competi-
tive prices are chosen. A standard way to achieve incentive-
compatibility is to use the Vickrey-Clarke-Groves payment
scheme, to be defined in the next section.

The Auction
Kernels To achieve flexibility in the price structure, we
follow Lahaie (2009) and draw on ideas from kernel meth-
ods in machine learning. To compute nonlinear compet-
itive prices, we view these as linear prices in a higher-
dimensional space to which we map the bundles via a map-
ping φ : X → RM , where usually M � m. Given

2When generalizing our results to arbitrary valuations, we may
need personalized prices to ensure the existence of competitive
prices (i.e., we may need pi(x) 6= pj(x) for two distinct buyers
i and j). This can be handled in our model by considering bundle-
agent pairs (x, i) instead of just bundles, and redefining valuations
so that an agent’s value for a bundle-value pair is zero unless the
bundle is earmarked for that agent.



p ∈ RM , the price of bundle x is then 〈p, φ(x)〉. These
linear prices in RM translate into nonlinear prices over the
original bundle space X . (With a slight abuse of notation,
we will often write p(x) to mean 〈p, φ(x)〉, keeping φ im-
plicit.) The issue here is that the dimension M may be very
large (even infinite), so it may be infeasible to work explic-
itly with prices in RM .

The trick used to address this in kernel methods is to
formulate the relevant problem (e.g., classification, regres-
sion) as a mathematical program that relies only on the in-
ner products 〈φ(xi), φ(xj)〉. What makes this practical is
that, for many kinds of mappings, the inner products can
be efficiently evaluated in time that does not depend on
M . The inner products are given via a kernel function k
over bundle pairs, defined as k(x1, x2) = 〈φ(x1), φ(x2)〉.
We will assume that the mapping φ is centered, meaning
φ(0) = 0; this ensures that prices are normalized. If this is
not the case, we can simply work with the alternate mapping
φ′ = φ− φ(0) and its associated kernel function.

We introduce two different kernels for the purpose of dis-
cussing our bounds, corresponding to two extremes. The
linear kernel is defined as k(x, x′) = 〈x, x′〉, correspond-
ing to the mapping φ(x) = x. This gives us the simplest
possible price structure of linear (i.e., item) prices. At the
other extreme we have the identity kernel: k(x, x′) = 1 if
x = x′ and 0 otherwise. This corresponds to a mapping to
R2m

where we have a dimension for each bundle; a bundle
gets sent to the unit vector that has a 1 in its associated di-
mension. The identity kernel gives the most complex possi-
ble price structure: each bundle is independently priced. As
mentioned, competitive prices always exist when one uses
the identity kernel. We stress that these kernels are for il-
lustration purposes only. In applications one would rely on
something more practical, but we do not address the ques-
tion of designing auction kernels here because this is neces-
sarily a domain-specific exercise.

Formulation With a mapping φ and associated kernel
function k at hand, we formulate the problem of finding an
efficient outcome via the following quadratic program (P):

max
α≥0,ᾱ≥0

n∑
i=1

αivi(xi)

− 1
2λ

∥∥∥∥∥
n∑
i=1

(
αi −

∑
I3i

ᾱI

)
φ(xi)

∥∥∥∥∥
2

(1)

s.t. αi ≤ 1 i = 1, . . . , n∑
I∈F

ᾱI ≤ 1 I ∈ F

(Throughout the paper, ‖·‖ refers to the Euclidean norm.)
Here variable αi controls whether buyer i obtains its bun-
dle xi, and ᾱI controls whether the seller makes selection
I . Rather than imposing a hard constraint that the outcome
be feasible, we introduce a penalty term (1) in the objec-
tive. By making λ small enough, the solution will be fea-
sible to within any desired tolerance; see Chapter 4.2 of
Bertsekas (1999). The use of a penalty term rather than a

constraint allows us to solve the program using only inner
product information because the squared norm evaluates to
β′Kβ, where βi = (αi −

∑
I3i ᾱi) and K is an n × n

matrix defined by K(i, j) = k(xi, xj). If the solution is in-
teger, the program has identified an efficient outcome. How-
ever, an integer solution will be guaranteed only if the price
structure is sufficiently complex to allow it (Lahaie 2009).
With the identity kernel, for instance, there is an integer so-
lution (Bikhchandani and Ostroy 2002).

The primal objective is convex because K is positive
semi-definite by Mercer’s theorem (Schölkopf and Smola
2001), and the Slater condition holds almost trivially. Thus
strong duality holds between (P) and its dual (Bertsekas
1999). The dual of the quadratic program is the following,
denoted (D):

min
π≥0,π̄≥0,p

n∑
i=1

πi + π̄ +
λ

2
‖p‖2

s.t. πi ≥ vi(xi)− 〈p, φ(xi)〉 i = 1, . . . , n

π̄ ≥

〈
p,
∑
i∈I

φ(xi)

〉
I ∈ F

We see that this program computes competitive prices. By
complementary slackness, if αi = 1, then agent i obtains
yi = xi and πi = vi(xi) − 〈p, φ(xi)〉 ≥ 0; whereas if
αi = 0, then yi = ∅ and 0 ≥ vi(xi)− 〈p, φ(xi)〉. Similarly,
the selection corresponding to ᾱ maximizes the seller’s rev-
enue. Of course, if the primal does not find an integer solu-
tion, then the dual solution is not useful. By the relationship
between the primal and dual solutions, the prices p can be
evaluated as

p(x) =
1
λ

n∑
i=1

(
αi −

∑
I3i

ᾱI

)
k(xi, x). (2)

This provides a sparse representation of the prices p implic-
itly computed in the dual once one has solved the primal.

The dual program has a penalty term on ‖p‖ in the ob-
jective. In machine learning, the purpose of this term is to
achieve some stability in the solution via large λ, so that
it does not depend too much on any particular point in the
training set; this yields good generalization ability (Bous-
quet and Elisseeff 2002). In our setting, the penalty term has
deep connections to incentive compatibility. The first hint of
this arises in the assignment problem, where each buyer ac-
quires only a single item. There linear competitive prices ex-
ist, and the (unique) minimal competitive prices (i.e., those
that minimize ‖p‖) happen to coincide with VCG payments,
thus achieving incentive compatibility (Leonard 1983). In
this work, we study these connections for more general price
structures.

From now on, we assume that k has been appropriately
chosen so that (P) has an integer solution, and that λ has
been chosen small enough so that the solution is feasible to
within a small tolerance. We will address how to choose
these in a principled way in the final section, once we under-
stand their impact on incentive-compatibility. We consider
an auction that proceeds by solving (P) to identify an effi-
cient selection I corresponding to an allocation y, and then



charges payments. Recall that once y is obtained, the auc-
tion has implicitly computed competitive prices p via (2).

We consider two different payment schemes. To de-
fine these, let y−h be the allocation computed by the auc-
tion when buyer h is removed, and let ỹ−h be a revenue-
maximizing allocation with respect to prices p when buyer
h is removed. Then the payments from buyer h are defined
as follows:

qh =
∑
i6=h

vi(y−hi )−
∑
i 6=h

vi(yi)

rh =
∑
i 6=h

p(ỹ−hi )−
∑
i 6=h

p(yi)

Payments q are the familiar VCG payments. Because
the auction implements an efficient selection, it follows
from standard VCG arguments that it would be incentive-
compatible if it charged payments q. Note that to compute
payments q, one would have to re-run the auction n times to
identify the allocations y−h for each buyer h, which can be
prohibitive.

We will see that payments r approximate VCG payments
q. To compute payments r, one needs to run revenue max-
imization over all agents besides h to obtain the left-hand
term in rh, for all agents h. Note that this only requires the
prices p as an input, not the agent values. In a single-shot
auction, computing r in this manner would be as computa-
tionally intensive as re-running the auction n times in the
worst case, but could be substantially easier if we happen to
have a simple price structure. The crucial point is that each
payment rh is solely a function of the prices derived after
solving (P) once. This distinguishes our approach from all
the auctions mentioned in the introduction, which implicitly
solve their underlying allocation problem n+ 1 times to ob-
tain VCG payments.

Computation Although the purpose of this paper is to an-
alyze the properties of solutions to (P), let us discuss briefly
how the program could be solved in practice—different
ways of solving the program would correspond to different
ways of running the auction (e.g., as a single-shot or iter-
ative auction). The kernel trick has made the number of
constraints manageable, but the number of ᾱI variables is
far too large to formulate (P) explicitly even for moderate
m. A classic way to solve programs with large numbers of
variables is to apply delayed column generation (Bertsekas
1999). In fact, a now standard way to design iterative combi-
natorial auctions is to formulate the selection problem with
variables for each allocation as in (P), and apply a primal-
dual or subgradient algorithm with delayed column gener-
ation to reach a solution (Bikhchandani et al. 2001). This
approach has proven effective in practice (Parkes and Ungar
2000). The same issue arises with support vector machines
over large datasets. There, cutting plane algorithms have
been developed to perform tasks such as support vector re-
gression (Joachims 2006). Given the strong resemblance be-
tween our problem and support vector machines, it should be
possible to leverage ideas from that literature as well. This
is the subject of ongoing work.

Incentive Compatibility
We show in this section that our auction is approximately
incentive compatible when it charges payments r. Let κ be a
constant such that ‖φ(x)‖ ≤ κ for all x ∈ X . This constant
can be seen as a crude measure of the “complexity” of the
associated price structure: smaller κwill correspond to more
complex price structures. For instance, we have κ =

√
m

for the linear kernel and κ = 1 for the identity kernel. Some
proofs in this section appeal to results from convex analysis
that can be found in (Bertsekas 1999), abbreviated (B) in the
proofs.

Stability We begin by showing that for large enough λ, the
presence or absence of a buyer h does not impact the optimal
dual solution (the price vector) significantly. We first formu-
late the dual problem in a slightly more convenient form.
The surplus functions of buyer i and the seller are defined as
follows:

πi(p) = max{vi(xi)− p(xi), 0} (3)

π̄(p) = max
I∈F

∑
i∈I

p(xi) (4)

These functions are convex, being the maximum of linear
functions of p. We have the following bound on their sub-
gradients.
Lemma 1 For a single-minded buyer i, we have ‖π′i‖ ≤
‖φ(xi)‖ for any p and π′i ∈ ∂πi(p).

Proof. Let f(pi) = vi(xi) − pi for pi ∈ R and let
g(p) = f(〈φ(xi), p〉) for p ∈ RM . Note that πi(p) =
max{g(p), 0}. We have ∂f(pi) = −1 for all pi, so by (B,
B.24(e)) ∂g(p) = −φ(xi). Thus by (B, B.25(b)), ∂πi(p) is
either {0}, {−φ(xi)}, or the convex combination of these
two. No matter what the case the norm of a subgradient is
always at most ‖φ(xi)‖. 2

The dual problem can now be formulated as that of maxi-
mizing the function

V (p) =
∑
i

πi(p) + π̄(p) +
λ

2
‖p‖2 .

This function is convex, being the sum of convex functions.
Let V −h(p) denote the same function but with buyer h re-
moved (i.e., the πh(p) term is subtracted away).
Proposition 1 If p is an optimal dual solution with all buy-
ers present, and p−h is an optimal dual solution with buyer
h removed, then ∥∥p− p−h∥∥ ≤ κ

λ
.

Proof. By (B, B.24(f)), we have 0 ∈ ∂V (p) and 0 ∈
∂V −h(p−h). By (B, B.24(b)) and (B, B.24(d)) therefore,
there are subgradients π′i(p) ∈ ∂πi(p), π̄′(p) ∈ ∂π̄(p),
π′i(p

−h) ∈ ∂πi(p−h), and π̄′(p−h) ∈ ∂π̄(p−h) such that∑
i

π′i(p) + π̄′(p) + λp = 0 (5)∑
i 6=h

π′i(p
−h) + π̄′(p−h) + λp−h = 0 (6)



Subtracting (6) from (5), then taking the inner product with
p− p−h and rearranging, we have

0 =
∑
i 6=h

〈π′i(p)− π′i(p−h), p− p−h〉

+ 〈π̄′(p)− π̄′(p−h), p− p−h〉

+ 〈π′h(p), p− p−h〉+ λ
∥∥p− p−h∥∥2

.

By the monotonicity property of subgradients (an easy con-
sequence of their definition) we have 〈π′i(p)− π′i(p−h), p−
p−h〉 ≥ 0 for each buyer i 6= h and the same for the seller
term. Thus we have 〈π′h(p), p− p−h〉+ λ

∥∥p− p−h∥∥2 ≤ 0.
Continuing,

λ
∥∥p− p−h∥∥2 ≤ 〈π′h(p), p−h − p〉

≤ ‖π′h(p)‖
∥∥p− p−h∥∥

≤ ‖φ(xh)‖
∥∥p− p−h∥∥

≤ κ
∥∥p− p−h∥∥ .

The third inequality follows from Lemma 1, and the sec-
ond follows from the Cauchy-Schwarz inequality. This com-
pletes the proof. 2

It may seem curious that Proposition 1 does not depend on
vh(xh). After all, if buyer h has a high value, then its ab-
sence should have a higher impact on the objective and thus
on the solution than the absence of low value buyers. This
reasoning is misleading for the following reason. Consider
the dual objective with a very large λ relative to the values.
In this case the quadratic program will essentially try to min-
imize ‖p‖, no matter what the values. Thus the proximity of
p and p−h is expressed in terms of λ alone. We see from
the proof though that the size of bundle xh does impact the
proximity of the two price vectors, and this is the origin of
the κ term.

Universal Competitiveness The connection between sta-
bility and approximate incentive compatibility comes via the
concept of universal competitive equilibrium, introduced by
Mishra and Parkes (2007). Prices p are universally com-
petitive if they support not only the efficient allocation, but
also any efficient allocation y−h that arises when buyer h
is removed, for any buyer h. We show that our program
computes approximately universally competitive prices. We
believe this result is interesting in its own right.

Proposition 2 Let p be the supporting prices computed by
the dual. Let y−h be the efficient allocation computed when
buyer h is removed, and let y′ be an arbitrary allocation
among the agents with h removed. Then for each buyer i 6=
h and for the seller, we have

vi(y−hi )− p(y−hi ) +
κ2

λ
≥ vi(y′i)− p(y′i)∑

i 6=h

p(y−hi ) +
(n− 1)κ2

λ
≥

∑
i 6=h

p(y′i)

Proof. We have the following derivation.

vi(y′i)− p(y′i)
= vi(y′i)− p−h(y′i) + p−h(y′i)− p(y′i)
≤ vi(y−hi )− p−h(y−hi ) + p−h(y′i)− p(y′i)
= vi(y−hi )− p(y−hi ) + p(y−hi )− p−h(y−hi )

+ p−h(y′i)− p(y′i)
= vi(y−hi )− p(y−hi ) + 〈p−h − p, φ(y′i)− φ(y−hi )〉
≤ vi(y−hi )− p(y−hi ) +

∥∥p−h − p∥∥∥∥φ(y′i)− φ(y−hi )
∥∥

≤ vi(y−hi )− p(y−hi ) +
κ2

λ
.

The first inequality follows from the fact that prices p−h sup-
port the allocation y−h, ȳ−h. The second follows from the
Cauchy-Schwarz inequality, and the last from Proposition 1.
The line of argument is completely analogous for the seller’s
revenue bound. 2

Mishra and Parkes (2007) showed that universally compet-
itive prices, besides being competitive, also contain all the
information necessary to compute VCG payments. From the
approximately universally competitive prices p computed by
our auction, we will therefore be able to derive approximate
VCG payments and achieve approximate incentive compat-
ibility.

VCG Payments We are now ready to prove our main re-
sult, characterizing how well payments r approximate VCG
payments.

Proposition 3 For each buyer i, the payments q and r sat-
isfy

ri ≥ qi ≥ ri −
2(n− 1)κ2

λ
.

Proof. Let y be the efficient allocation computed by the
auction together with prices p, let y−h be the efficient allo-
cation computed when buyer h is removed, and let ỹ−hi be
a revenue-maximizing allocation among buyers i 6= h with
respect to p. Note that for any buyer i 6= s,

vi(y−hi )− vi(yi) = [vi(y−hi )− p(y−hi )]− [vi(yi)− p(yi)]
+ p(y−hi )− p(yi)

≥ p(y−hi )− p(yi)−
κ2

λ
. (7)

≤ p(y−hi )− p(yi). (8)

where (7) follows from Proposition 2 and (8) by the fact
that p supports y. Summing (8) over all i 6= h combined
with the fact that ỹ−hi maximizes revenue at prices p (among
i 6= h) yields the upper bound. Summing (7) over all i 6= h
combined with the seller bound in Proposition 2 yields the
lower bound. 2

Approximate incentive compatibility now follows almost
immediately.



Theorem 1 The auction that charges payments r is ε-
incentive compatible for ε = 2(n−1)κ2

λ .

Proof. Let (y, r) be the allocation and payments computed
when buyer h reports its value function truthfully, and let
(y′, r′) be the resulting allocation and payments when it re-
ports some other value. We have:

vh(yh)− rh ≥ vh(yh)− qh −
2(n− 1)κ2

λ

≥ vh(y′h)− q′h −
2(n− 1)κ2

λ

≥ vh(y′h)− r′h −
2(n− 1)κ2

λ
.

The first inequality follow from the lower bound in Propo-
sition 3, the second from the incentive compatibility of the
VCG payment scheme, and the third from the upper bound
in Proposition 3. 2

Discussion
The error ε in Theorem 1 can be reduced in two ways: by
using a price structure with high complexity (small κ) or a
large penalty term (large λ). But note that both cannot be im-
proved in tandem. With more complex price structures, the
allocation problem becomes increasingly difficult and one
needs an increasingly small λ to achieve feasibility within a
reasonable tolerance (Lahaie 2009).

Holding k and hence κ fixed, one way to maximize λ is
to begin by setting it large, and then solve (P) over rounds
using updates λ ← τλ, where τ ∈ [0, 1), until the requisite
tolerance on feasibility is achieved. This is precisely the ap-
proach taken by penalty methods for solving programs such
as ours (Bertsekas 1999). Taking τ close to 1 will improve
the minimization, but also increase the computation time.

To minimize the error in Theorem 1, one could then take
the following approach. Consider price structures of increas-
ing complexity, each time minimizing λ as just described to
obtain the best possible error ε. There are common kernels,
such as the Gaussian and polynomial kernels (Schölkopf and
Smola 2001), that have parameters allowing one to adjust
their complexity. Eventually one will reach a point of dimin-
ishing returns, settling on the optimal trade-off between the
complexity and penalty terms. This approach is analogous
to that of structural risk minimization in statistical learning
theory (Vapnik 1998), where one trades off the ability of a
kernel to fit training data with its ability to generalize.

Finally, let us examine how closely the price p(yh) buyer
h faces can match its approximate VCG payment rh. Note
that ph − rh =

∑
i p(yi) −

∑
i 6=h p(y

−h
i ) ≥ 0, so an

agent’s payment never exceeds its price (recall that p sup-
ports y). By the Cauchy-Schwarz inequality, this dif-
ference is bounded by ‖p‖ multiplied by the term δ =∥∥∥∑i φ(yi)−

∑
i 6=h φ(y−hi )

∥∥∥ . The latter quantity can be
seen as an indicator of the distance between prices and pay-
ments. For instance, note that with the linear kernel, we have∑
i φ(yi) =

∑
i 6=h φ(y−hi ) = 1, so δ = 0. This means that

if our auction can successfully find an integer solution with

this kernel, then the resulting prices satisfy p(yh) = rh and
correspond to approximate VCG payments. On the other
hand, we see that δ can be as large as

√
2n− 1 with the

identity kernel. This suggests that prices and payments di-
verge with increasingly complex price structures. In general,
the development of new complexity measures to character-
ize economic properties of kernels appears to be a stimulat-
ing avenue for future research.

References
Ausubel, L., and Milgrom, P. 2006. The lovely but lonely Vickrey
auction. In Combinatorial Auctions. MIT Press. chapter 1.
Ausubel, L. M. 2006. An efficient dynamic auction for heteroge-
neous commodities. American Economic Review 96(3):602–629.
Bertsekas, D. P. 1999. Nonlinear Programming. Belmont, MA:
Athena Scientific.
Bikhchandani, S., and Ostroy, J. M. 2002. The package assignment
model. Journal of Economic Theory 107:377–406.
Bikhchandani, S.; de Vries, S.; Schummer, J.; and Vohra, R. 2001.
Linear programming and Vickrey auctions. In Mathematics of the
Internet: E-Auction and Markets, volume 127, 75–116. IMA Vol-
umes in Mathematics and its Applications.
Bousquet, O., and Elisseeff, A. 2002. Stability and generalization.
Journal of Machine Learning Research 2:499–526.
Clarke, E. H. 1971. Multipart pricing of public goods. Public
Choice 11:17–33.
de Vries, S.; Schummer, J.; and Vohra, R. V. 2007. On ascending
Vickrey auctions for heterogeneous objects. Journal of Economic
Theory 132(1):95–118.
Groves, T. 1979. Efficient collective choice when compensation is
possible. Review of Economic Studies 46:227–241.
Joachims, T. 2006. Training linear SVMs in linear time. In Proc. of
the 12th ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 217–226.
Lahaie, S., and Parkes, D. C. 2009. Fair package assignment. In
Proc. of the First Conference on Auctions, Market Mechanisms and
their Applications.
Lahaie, S. 2009. A kernel method for market clearing. In Proc.
of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), 208–213.
Leonard, H. B. 1983. Elicitation of honest preferences for the
assignment of individuals to positions. The Journal of Political
Economy 91(3):461–479.
Mishra, D., and Parkes, D. C. 2007. Ascending price Vick-
rey auctions for general valuations. Journal of Economic Theory
132(1):335–366.
Nisan, N., and Ronen, A. 1999. Algorithmic mechanism design. In
Proc. of the 31st Annual ACM Symposium on Theory of Computing
(STOC), 129–140.
Parkes, D. C., and Ungar, L. H. 2000. Iterative combinatorial
auctions: Theory and practice. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI), 74–81.
Schölkopf, B., and Smola, A. J. 2001. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press.
Vapnik, V. N. 1998. Statistical Learning Theory. Wiley-
Interscience.
Vickrey, W. 1961. Counterspeculation, auctions and competitive
sealed tenders. Journal of Finance 16:8–37.


