
A Kernel-Based Iterative Combinatorial Auction

Sébastien Lahaie
Yahoo! Research

New York, NY 10018
lahaies@yahoo-inc.com

Abstract
This paper describes an iterative combinatorial auction for
single-minded bidders that offers modularity in the choice of
price structure, drawing on ideas from kernel methods and the
primal-dual paradigm of auction design. In our implementa-
tion, the auction is able to automatically detect, as the rounds
progress, whether price expressiveness must be increased to
clear the market. The auction also features a configurable step
size which can be tuned to trade-off between monotonicity in
prices and the number of bidding rounds, with no impact on
efficiency. An empirical evaluation against a state of the art
ascending-price auction demonstrates the performance gains
that can be obtained in efficiency, revenue, and rounds to con-
vergence through various configurations of our design.

Introduction
Combinatorial auctions have become a canonical mecha-
nism for resource allocation in the presence of non-additive
values. In these kinds of auctions, agents place bids on pack-
ages to express complementarities between resources; appli-
cation areas include task assignment, distributed scheduling,
spectrum allocation and supply chain management, among
many others (Cramton et al. 2006). Iterative auctions, which
proceed over rounds, are particularly attractive in many do-
mains because they incorporate preference elicitation into
the auction procedure—at each round, agents only need to
evaluate the parts of their preferences relevant to bidding
against the current prices (Parkes and Ungar 2000). In light
of this motivation, the choice of price structure (e.g., linear)
is a central element of an iterative auction design because it
impacts the complexity of bidding.

In this work we describe an iterative combinatorial auc-
tion that achieves modularity in price structure. Our auction
applies to the class of single-minded bidders, which is the
simplest valuation class exhibiting complementarity. We de-
velop our auction by relying on the primal-dual paradigm of
auction design introduced by de Vries et al. (2007). Under
this paradigm, one formulates the efficient allocation prob-
lem as an appropriate linear program, and then examines the
mechanics of the primal-dual algorithm on this formulation.
It turns out that the steps of the algorithm have natural inter-
pretations as auction mechanics: bidding, allocation, price

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

update, and termination. However, each application of the
paradigm requires a domain-specific formulation of the al-
location problem and therefore a separate implementation.

To develop a modular implementation of the paradigm we
derive a formulation of the allocation problem that is in a
sense parametrized by the price structure. We achieve this
by drawing on techniques from kernel methods, building on
the work of Lahaie (2009), who introduced the idea of us-
ing kernel representations for prices in market settings. By
substituting in the appropriate kernel, a practitioner can tai-
lor our auction implementation to the application at hand:
there is a kernel for uniform prices, as in the auction of
Ausubel (2004); a kernel for linear prices, as in the auction
of Demange et al. (1986); and a kernel for bundle prices, as
in the auction of de Vries et al. (2007) among others.

Besides the standard price structures just mentioned, our
framework can accommodate much more exotic structures
than have been considered so far—for instance, we can draw
on the huge variety of kernels that already exist in the ma-
chine learning literature. We identify the property that must
hold for a kernel to work within our auction, and explain
how a generic kernel can be adapted so that it is satisfied.
In our implementation we use the polynomial kernel, which
leads to prices that are fixed-degree polynomials, interpo-
lating between linear and bundle prices. We show how to
detect when the degree is too low to clear the auction and
therefore update it when needed. This strategy can in fact be
applied with any family of kernels of increasing complexity.

Our auction is neither purely ascending nor descending;
the price trajectory on any bundle can oscillate. While as-
cending prices are sometimes considered easier for bidders
to cope with, flexibility in the price trajectory allows one
to decrease the number of rounds to convergence without
impacting efficiency. We evaluate our auction implemen-
tation against iBundle (Parkes and Ungar 2000), a state of
the art ascending-price combinatorial auction, and find that
it compares favorably along several metrics including ef-
ficiency, revenue, and number of rounds. In the process,
we also discover that the problem instances generated by
CATS (Leyton-Brown et al. 2000), a standard test suite for
evaluating combinatorial auctions, can be cleared to very
high levels of efficiency using no more than quadratic prices.
We note that we do not address incentives in this work—our
focus is on the computational aspects of auction design.

Model
There is a set of buyers N = {1, . . . , n} and m distinct in-
divisible items held by a single seller. A bundle is a subset
of the items. We associate each bundle with its indicator
vector, and denote the set of bundles by X = {0, 1}m. The
bundle containing all items is denoted by 1, while the empty
bundle is denoted by 0, though for clarity we will often also
use ∅ for the latter. We write x ≤ x′ to denote that bun-
dle x is contained in bundle x′ (the inequality is understood
component-wise).

Buyer i has a valuation function vi : X → R+ denoting
how much it is willing to pay for each bundle. In this work,
we assume that each buyer is single-minded, meaning that
its valuation is characterized by a bundle-value pair (xi, vi)
as follows:

vi(x) =
{
vi if x ≥ xi
0 otherwise

(We are using vi in two different roles here with a slight
abuse of notation.) We require that xi 6= ∅; therefore each
valuation is normalized, with vi(∅) = 0. In words, buyer i
would like to acquire all the items in bundle xi, but is not
interested in any others. We assume that the seller does not
derive any value from retaining any bundle of items.

An allocation is a vector of n bundles indicating what
each buyer receives. Since buyer i is only interested in bun-
dle xi, we can restrict our attention to allocations where i
receives an element of Xi = {∅, xi}. Therefore we can
equivalently represent an allocation by a subset I ⊆ N de-
noting which buyers obtain their desired bundles. Given this
subset we will write the actual allocation as xI , which de-
notes a vector of bundles whose ith entry is xi if i ∈ I , and
∅ otherwise. An allocation I is feasible if

∑
i∈I xi ≤ 1.

We denote the set of feasible allocations by I. An allocation
is efficient if it is feasible and maximizes the total value to
the buyers (the seller does not enter this definition because it
does not value the items). Formally, allocation xI is efficient
if I ∈ argmaxI′∈I

∑
i∈I′ vi.

The main purpose of an auction is to identify an efficient
allocation together with prices p : X → R that balance
supply and demand. We assume that, like valuations, prices
are normalized: p(∅) = 0. We assume that the buyers have
quasi-linear utilities, so that the utility to buyer i when ob-
taining bundle x at prices p is ui(x; p) = vi(x) − p(x).
Buyer i’s demand set at prices p is defined as

Di(p) = argmax
x∈Xi

ui(x; p),

namely those bundles in Xi that maximize its utility. Simi-
larly, we define the seller’s supply set at prices p as

S(p) =

{
xI : I ∈ argmax

I′∈I

∑
i∈I′

p(xi)

}
.

We say that prices p support a given allocation xI if it lies in
the seller’s supply set at those prices, xI ∈ S(p), and each
bundle in xI lies in the respective agent’s demand-set: i ∈ I
only if xi ∈ Di(p), and i 6∈ I only if ∅ ∈ Di(p). We say
that prices are competitive if they support some allocation.

It is well-known that if an allocation is supported by some
prices, then that allocation is efficient, and conversely if an
allocation is efficient, then there exist competitive prices to
support it (Bikhchandani and Ostroy 2002). Note that, as
defined, prices can be arbitrary functions over the bundles in
general. These existence results may not hold if we impose
some specific structure on prices, such as linearity.1 Our
kernel-based approach will provide a modular way to intro-
duce structure to auction prices, and adapt it as needed to
support efficient allocations.

Kernels
To achieve modularity in the price structure, we draw on
ideas from kernel methods in machine learning, follow-
ing (Lahaie 2009). We define a new encoding for the bundles
within a feature space Y = RM via a mapping φ : X → Y ,
where M ≥ m. Entry j in the vector φ(x) corresponds to
the value of the jth “feature” of bundle x, for j = 1, . . . ,M .
Prices are now taken to be linear functions over feature
space, so that p ∈ RM and the price of a bundle x is eval-
uated by taking the inner product 〈p, φ(x)〉. We will some-
times continue to write p(x) rather than 〈p, φ(x)〉, keeping
the mapping implicit.

To encode allocations in feature space, we simply sum
up their constituent bundles, so that xI is mapped to∑
i∈I φ(xi); with a slight abuse of notation, we use φ(xI) to

denote this induced allocation map. This is consistent with
our concept of prices, because the price of a re-encoded al-
location is simply its revenue:

〈p, φ(xI)〉 =

〈
p,
∑
i∈I

φ(xi)

〉
=
∑
i∈I
〈p, φ(xi)〉 .

To ensure that prices are normalized, we require that the
mapping be centered: φ(∅) = 0. If this is not the case (e.g.,
with the Gaussian kernel in machine learning), we can cen-
ter the mapping by using φ′(x) = φ(x)− φ(∅) instead.

Now, to ensure that competitive prices exist we may need
the dimension M of the prices to be very large, even expo-
nential in the number of items. In such cases it becomes
intractable to explicitly work with feature space encodings.
The key computational idea behind kernel methods is the
“kernel trick”: rather than work in feature space, we formu-
late the problem at hand (in this case, allocation and pricing)
purely in terms of inner products of feature space vectors.
What makes this practical is that, for many useful mappings,
the inner products can be evaluated in time independent of
M . The inner products are given via a kernel function k over
bundle pairs: k(x, x′) = 〈φ(x), φ(x′)〉.

1As defined prices can in general be arbitrary over the bun-
dles, but they are still anonymous in the sense that different agents
see the same prices for the same bundles. It is known that for
single-minded bidders anonymous prices suffice to support effi-
cient allocations (Parkes and Ungar 2000), but for other valuation
classes personalized prices may be needed (Bikhchandani and Os-
troy 2002). The kernel approach allows for personalized prices
if we define kernels over personalized bundles (formally, bundle-
agent pairs), but we do not pursue this here.

The following kernels are of immediate relevance to
auction design as the associated price structures reoccur
throughout the literature, except for the last kernel which
forms the basis of our implementation.

Unit Perhaps the simplest possible kernel is k(x, x′) =
|x||x′|, where |x| denotes the number of items in x. This
corresponds to the map φ(x) = |x|. This leads to uniform
prices.

Linear The linear kernel is defined by k(x, x′) = 〈x, x′〉,
corresponding to the identity map φ(x) = x. This leads to
linear prices.

Identity The identity kernel is defined by k(x, x′) = 1 if
x = x′ and neither bundle is empty, and 0 otherwise. In this
case the feature space is of dimension 2m − 1, with one di-
mension for every non-empty bundle. The associated map φ
sends non-empty bundle x to the canonical unit vector with a
1 in the component corresponding to x, and sends the empty
bundle to the origin. The resulting prices are general: each
bundle is separately priced.

Polynomial As a generalization of the linear kernel, we
have the polynomial kernel defined by k(x, x′) = 〈x, x′〉d.
The associated map has a dimension for every non-empty
bundle x with |x| ≤ d. The component corresponding to
x 6= ∅ in φ(x′) is 1 if x ≤ x′ and 0 otherwise. The resulting
prices price every combination of items up to size d.

Now, it is not the case that any kernel can be used in the
context of an auction. Because the auction must balance sup-
ply and demand, it is crucial that the associated mapping re-
tain information on how bundles aggregate into allocations.
To illustrate, suppose we have two distinct items. Under
the unit kernel above, the infeasible allocation (10, 10) and
the feasible allocation (10, 01) both map to 2. Therefore, if
the first allocation represented demand and the second sup-
ply, we would be mislead into thinking that supply meets
demand and that the items can be feasibly allocated.

To avoid this the mapping must not lose essential infor-
mation about which items a bundle contains. Recall that I
denotes the feasible allocations, and let Ic denote its com-
plement. Let φ(I) denote the image of I under the alloca-
tion map induced by φ, and similarly for Ic. The following
property ensures that feasible and infeasible allocations are
not confused in feature space.

Definition 1 A kernel k is respectful if its associated allo-
cation map satisfies φ(I) ∩ φ(Ic) = ∅.
Given any kernel k (e.g., drawn from the machine learn-
ing literature), there is a straightforward way to extend it
to make it respectful if it is not already. We can aug-
ment the underlying feature map φ by appending the orig-
inal bundle representation, resulting in φ′(x) = [φ(x), x].
The corresponding kernel function is simply k′(x, x′) =
k(x, x′) + 〈x, x′〉. This amounts to introducing the price
structure implicit in k on top of linear prices. It is not hard to
see that all the kernels introduced above are already respect-
ful, except for the unit kernel. The unit kernel is respectful
for homogeneous but not heterogeneous items.

Formulation
To apply the primal-dual paradigm of auction design we first
need to formulate the efficient allocation problem as a linear
program. Using a feature map φ to maintain flexibility in
the eventual price structure, the primal formulation is as fol-
lows.

max
y≥0,ȳ≥0

∑
i∈N

viyi

s.t.
∑
i∈N

yiφ(xi) =
∑
I∈I

ȳIφ(xI) (1)∑
I∈I

ȳI ≤ 1, yi ≤ 1 (i ∈ N) (2)

Here we have a variable yi ∈ [0, 1] for each buyer i ∈ N
indicating whether i obtained its desired bundle xi. We also
have a variable yI ∈ [0, 1] for each I ∈ I indicating which
allocation the seller supplies. The equality (1) balances sup-
ply and demand.

This formulation cannot be solved using generic linear
programming algorithms because it has an exponential num-
ber of seller variables, and (1) corresponds to M con-
straints, which could be prohibitively large. The primal-dual
paradigm together with the kernel trick will allow us to ad-
dress these issues. However, a prerequisite for applying the
paradigm is that the primal formulation have an integer op-
timal solution. For now we assume that φ has been chosen
so that this holds, and explain later how our auction (implic-
itly) adapts φ to ensure this. We could use the identity kernel
to guarantee integrality, because in that case we recover the
formulation of Bikhchandani and Ostroy (2002), but a much
simpler price structure may suffice.

To confirm that our formulation is correct, let I ′ = {i ∈
N : yi = 1} be the allocation on the demand side and let
I be the allocation on the supply side, for which ȳI = 1.
Note that I is feasible by definition, and since φ(I ′) = φ(I)
by constraints (1), it follows that I ′ is also feasible if the
kernel is respectful. This shows that the constraints indeed
characterize feasible allocations.

The dual problem is that of computing competitive prices,
formulated as follows.

min
π≥0,π̄≥0,p

∑
i∈N

πi + π̄

s.t. πi ≥ vi − 〈p, φ(xi)〉 (i ∈ N) (3)
π̄ ≥ 〈p, φ(xI)〉 (I ∈ I) (4)

Here the variables p ∈ RM , corresponding to the con-
straints (1), have a natural interpretation as prices. We have
a variable πi for each buyer i ∈ N , which at an optimal so-
lution equals the buyer’s maximum possible utility at prices
p, because we have πi = max{vi − p(xi), 0}. Similarly, π̄
equals the seller’s maximum revenue over all feasible alloca-
tions. From the optimal primal solution let I = {i : yi = 1}
and from the optimal dual solution take the prices p. As
de Vries et al. (2007) have shown, the complementary slack-
ness conditions imply that p supports xI , which confirms
that the dual correctly computes competitive prices.

1. Demand Quote the current prices p and record the de-
mand set Di(p) of each buyer i ∈ N .

2. Supply Compute a revenue-maximizing allocation J ∈
S(p) by solving a weighted set-packing problem, taking as
input the weight-set pairs (p(xi), xi) for each i ∈ N .

3. Termination Check whether xi ∈ Di(p) for each i ∈ J
and ∅ ∈ Di(p) for each i 6∈ J . If so, the auction terminates
and outputs allocation xJ together with prices p. Otherwise,
the round proceeds.

4. Price Update Compute the price update q given allo-
cation xJ and the demand set Di(p) of each buyer i ∈ N .
Compute the step size θ and set p← p+ θq.

Figure 1: Generic auction round.

Auction
An auction can be viewed as a formal process of balanc-
ing supply and demand via prices, with prices updated at
each round according to the discrepancy between the two.
Figure 1 outlines a generic auction round for single-minded
bidders; auctions that fall within the primal-dual paradigm
follow this template (with only minor variations), including
our own.

In the first round demand sets are collected—this amounts
to bidding. In practice, it is common to collect ε-demand-
sets, meaning all bundles that maximize a buyer’s utility to
within some additive slack of ε ≥ 0. This can speed up con-
vergence significantly even for moderate ε relative to buyer
values, as it increases the chances that supply will meet de-
mand. In the second round supply is collected; the revenue-
maximization problem here can be formulated as an integer
program, and solved at large scales in practice using general
or special-purpose solvers (Cramton et al. 2006). The third
round checks whether supply meets demand, and if this is
the case, the auction terminates. Note that, upon termina-
tion, the prices p support allocation xJ , so the latter is ef-
ficient; if ε-demand-sets are used, the allocation is efficient
to within an additive error of nε (Parkes and Ungar 2000).
To complete the specification, we still need to elaborate the
details of step 4.

Price Update
The price update under the primal-dual paradigm involves
formulating a linear program that attempts to satisfy the
complementary slackness conditions, or more intuitively, to
balance supply and demand. Given the demand sets under
the current prices p, letN+ = {i ∈ N : xi ∈ Di(p)} and let
N− = {i ∈ N : ∅ ∈ Di(p)}. Note that these two sets may
intersect if some buyer demand set is composed of {xi, ∅}.
The restricted primal is formulated as follows.

max
z≥0,z̄≥0

∑
i∈N+

zi −
∑
i∈N−

zi + z̄

s.t.
∑
i∈N

ziφ(xi) = z̄φ(xJ) (5)

z̄ ≤ 1, zi ≤ 1 (i ∈ N) (6)

Here we again have a variable zi ∈ [0, 1] for each i ∈ N , in-
dicating whether buyer i receives a bundle from its demand
set. We also have a variable z̄ ∈ [0, 1] that enters the ob-
jective, indicating whether the seller’s revenue-maximizing
allocation is accepted. Note that the maximum possible ob-
jective value for the restricted primal is ` = |N+\N−|+ 1,
which occurs when supply meets demand.

If the restricted primal does not find a solution that sat-
isfies every agent as well as the seller, then the primal-dual
paradigm dictates that we appeal to the dual of the restricted
primal to obtain price updates. Specifically, the dual vari-
ables q ∈ RM corresponding to constraints (5) in the re-
stricted primal constitute the update (de Vries et al. 2007).
We have now reached an impasse, because the large number
of constraints in (5) still remains, and q cannot be explicitly
represented. To overcome this, we apply the kernel trick by
reformulating the restricted primal purely in terms of inner
products.

The idea, introduced in (Lahaie 2009), is to use a penalty
method to solve the restricted primal without explicitly
working with the M -dimensional vectors in constraints (5),
instead using information from the kernel function. We
remove constraints (5) and replace them with a quadratic
penalty term in the objective:

−ν
2

∥∥∥∥∥∑
i∈N

ziφ(xi)− z̄φ(xJ)

∥∥∥∥∥
2

. (7)

Here ν is taken large to ensure the original constraints are
(very close to) satisfied at an optimal solution. In practice
the method proceeds in iterations, starting with an initial
setting of ν0 = 1 and updating νt+1 ← τνt at iteration
t as long as the norm in (7) is not close enough to zero,
where typically τ ∈ [4, 10] (Bertsekas 1996). Evaluating
the squared norm in (7), one finds that it only involves inner
products between feature space representations of bundles,
and the resulting Hessian matrix is of size (n+1)× (n+1).
Therefore each iteration of the method involves solving a
quadratic program of polynomial size that can be formulated
using the kernel function. This provides a tractable way of
solving the restricted primal.

To obtain a sparse representation of the update q, we ap-
peal to a result on penalty methods by Bertsekas (1996):

q = lim
ν→+∞

ν
∑
i∈N

ziφ(xi)− νz̄φ(xJ),

where (z, z̄) here is now the optimal solution to the restricted
primal, and q is the optimal solution to its dual. Applying
this to a generic bundle x and collecting terms, we find that
the price update takes the form:

〈q, x〉 =
∑
i∈N\J

νzi k(xi, x) +
∑
i∈J

(νzi − νz̄) k(xi, x). (8)

In this representation we only need to keep track of n coef-
ficients, one for each agent, and to update prices we simply
need to add the update coefficients to the price coefficients;
at the initial round all price coefficients are zero leading to
zero prices. This completes the specification of the price
update for a fixed kernel k.

Structure Update
We have so far assumed that the kernel k (equivalently, the
mapping φ) has been chosen in such a way that our primal
has an integer solution. Without keen insight into the agents’
valuations, it can be difficult for the auctioneer to ensure this
a priori without resorting to a highly nonlinear price struc-
ture. Here we show how to detect the need for a more com-
plex kernel at each round of the auction. We appeal to the
following simple result.2

Proposition 1 The primal has an integer solution if and
only if the final restricted primal has an integer solution.

In light of this result, we can check whether the solution
to the restricted primal, as solved by the penalty method,
is integer in order to detect the need for a kernel update.
There is complete flexibility in the kernel one can choose as
a replacement. In our implementation we use the polynomial
kernel, so a natural update is to increment the degree d.

We should clarify that we do not just replace the kernel
in the current price representation (8). This could lead to a
large break in the current prices. Instead, we keep the price
representations for each separate kernel on a stack, and push
a new (initially zero) price representation onto the stack each
time a new kernel is introduced. Price updates only apply to
the top element of the stack, and the price of a bundle is the
sum of its prices under each element of the stack. Under the
polynomial kernel, d is updated at mostm times, so the price
representation under this scheme never needs more than nm
coefficients.

Step Size
In current auction designs the step size is often set to a con-
stant, typically θ = ε, where ε is the slack we allow for the
demand sets (Parkes and Ungar 2000). The choice of ε under
this scheme can significantly affect the performance of the
auction: a larger ε decreases the number of rounds to con-
vergence, but the efficiency of the final allocation suffers. A
large step size can cause the auction prices to overshoot the
set of competitive prices leading to inefficiency, and in an
ascending auction there is no way to correct this.

Because our auction is neither purely ascending nor de-
scending, we can choose an adaptive stepsize rule that be-
gins aggressively and diminishes as needed, to achieve both
fast convergence and high efficiency. Given the slack pa-
rameter ε and the current round’s computed update q, our
step size is set to θ = γε/maxi∈N |q(xi)|, where γ ≥ 1.
Under this step size an agent sees a price change of no more
than γε on its desired bundle. The parameter γ can be set
large initially to implement aggressive updates, and dimin-
ished when needed until it reaches a minimum value of 1.
We consider two policies for diminishing γ.

The first policy tries to detect whether prices have over-
or under-shot their competitive levels. To determine this, we
examine the variable z̄ in the solution to the restricted pri-
mal. Note that z̄ = 1 indicates overdemand, because the

2Proof omitted due to space constraints—simply observe that
an integer optimal solution to the primal translates into an integer
optimal solution to the restricted primal, and vice-versa.

restricted primal tries to satisfy as many agents as possible,
while z̄ = 0 indicates underdemand, because in this case
most agents demand ∅. Therefore, a switch in the value of
z̄ from round to round provides a convenient heuristic to de-
tect whether prices have bypassed their competitive levels.
When a switch occurs we diminish the stepsize by decre-
menting γ by 1.

The next policy simply decrements γ by 1 whenever a
fixed number of rounds ρ has passed. We found that, even
with the first policy in place, prices can oscillate from as-
cending to descending without decrementing γ, so this sec-
ond policy ensures that the maximum price update can even-
tually reach ε.

Empirical Evaluation
In this section we report on experiments run to evaluate
our kernel-based auction in terms of several performance
metrics including efficiency, revenue, and speed of conver-
gence. In our implementation we use the polynomial ker-
nel beginning with degree d = 1, incrementing the degree
when needed as described. As a benchmark we implemented
iBundle (Parkes and Ungar 2000), which differs from our
auction only in the price update step. We used the CATS
suite of distributions to generate problem instances (Leyton-
Brown et al. 2000). CATS takes in as input the number
of goods m and “bids” n, and generates n single-minded
bidders, represented as bundle-value pairs. We specifically
used the following distributions from the suite: arbitrary,
paths, regions, scheduling. Throughout we set m = 30, and
n = 50 unless otherwise noted.

Our kernel-based auction was implemented in Python 2.6,
using Cbc to solve for the allocation in step 2 of each round
(recall Figure 1), and cvxopt to solve the quadratic pro-
gram that computes the price update in step 4.3 The penalty
method’s update parameter was set to τ = 6 throughout;
we found that tuning τ within [2, 10] had little impact on
auction performance. We set the first step size parameter
to γ = 10 unless otherwise noted; as it directly determines
the magnitude of the step size, it has a significant impact on
the number of rounds. The second step size parameter was
set to ρ = 5, which ensures that the step size diminishes
every five rounds; this parameter does have a moderate im-
pact on the number of rounds, but due to space constraints
we do not report on its effect here. Finally, to ensure that
our auction and the benchmark are on the same footing, we
used the same demand slack parameter for both, calibrating
it to ε = mini∈N vi/2 for each instance. This led to 99%
efficiency on average over all distributions.

Results. The performance of our auction against the
benchmark is summarized in Table 1. The efficiency met-
ric is defined as the percent of the maximum possible value
achieved by the final allocation, while revenue is the percent
of this same value paid out by the buyers upon termination.
The correctness metric records what percent of the final al-
locations were perfectly (as opposed to approximately) effi-
cient. Finally, the monotonicity metric measures the percent

3projects.coin-or.org/Cbc
abel.ee.ucla.edu/cvxopt/

of the total price variation over rounds that is due to price
increases, averaged over the buyers.

distribution auction rounds eff. rev. corr. monot.

arbitrary iBundle 81 99 95 90 100
k-auction 66 99 97 90 81

paths iBundle 45 99 82 80 100
k-auction 65 99 91 92 74

regions iBundle 122 99 94 83 100
k-auction 94 99 97 85 82

scheduling iBundle 46 99 94 84 100
k-auction 62 99 96 98 60

Table 1: Performance of the kernel-based auction against the
benchmark. All metrics except rounds are in percents, averaged
over 50 runs. Bold indicates the best performing auction.

We see that each auction always achieves 99% efficiency
(rounded down), as expected given the calibration. Neither
auction dominates in terms of the number of rounds. We see
that the kernel-based auction tends to do better for the two
distributions that require more rounds in general, namely ar-
bitrary and regions. However, the number of rounds is much
more consistent across distributions for our auction than for
the benchmark, with standard deviations of 15 and 36, re-
spectively. Our auction dominates the benchmark in terms
of revenue; we attribute this to its ability to make more ag-
gressive price updates. Our auction also dominates in terms
of correctness, though this is not as important since high
levels of efficiency are reached in any case. Finally, it is
interesting to note that the price updates in our auction are
mostly increasing, but still a substantial fraction of the price
trajectory is decreasing.

Figure 2 provides more refined insights into the impact of
the γ step size parameter. We see that as γ is varied, there
is an optimum where the step size is neither too conserva-
tive nor aggressive, and the number of rounds is minimized.
Note that efficiency does not vary with γ—this is due to the
fact that the ε slack is decoupled from the step size in our
auction, unlike iBundle. Monotonicity decreases smoothly
with γ as expected, and there is an inherent trade-off be-
tween the number of rounds and monotonicity.

It is interesting to consider the degree of the final prices
obtained by our kernel-based auction. Remarkably, we
found that over 50 runs on each distribution, d never ex-
ceeded 2, meaning the auction was always able to clear the
market with at most quadratic prices. (Even over hundreds
of other test runs, we never encountered d > 2.) The percent
of instances that cleared with linear prices was as follows:
100% for arbitrary, 90% for regions, 60% for scheduling,
and 10% for paths. This was an unexpected finding because
the arbitrary and regions distributions are known to be the
hardest of the CATS distributions, in terms of winner de-
termination (Leyton-Brown et al. 2000), and this was borne
out in our experiments. We believe this indicates that the LP
relaxations of these instances under the linear kernel, while
rarely integer, nevertheless contain integer solutions that are
very close to optimal.

gamma

60

70

80

90

100

110

5 10 15 20

●

●

●

●

● ●
●

●

●

●

rounds
monotonicity

efficiency
revenue

●

Figure 2: Effect of the γ parameter under the arbitrary distribu-
tion. All metrics except rounds are in percents. Each point is an
average over 50 runs.

To conclude we briefly consider the scalability of our auc-
tion. On the arbitrary distribution (the hardest we observed),
the average runtime of our auction for 50 buyers was 38s
over fifty runs, compared to 19s for iBundle. For 80 buyers,
the average runtime was 156s, compared to 88s for iBundle.
We see that our auction is slower by around a factor of 2,
which is expected given that the two auctions only essen-
tially differ in their price update step, and ours is much more
intensive to accommodate a wide variety of price structures.
Given that the quadratic program in the price update step
has a very simple form (box constraints), we believe signif-
icant runtime improvements could be gained by exploiting
its special structure (Byrd et al. 1995).

References
Ausubel, L. M. 2004. An efficient ascending-bid auction for
multiple objects. American Economic Review 94(5):1452–1475.
Bertsekas, D. P. 1996. Constrained Optimization and Lagrange
Multiplier Methods. Athena Scientific.
Bikhchandani, S., and Ostroy, J. M. 2002. The package assign-
ment model. Journal of Economic Theory 107:377–406.
Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995. A lim-
ited memory algorithm for bound constrained optimization. SIAM
Journal on Scientific and Statistical Computing 16(5):1190–1208.
Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006. Combi-
natorial Auctions. MIT Press.
de Vries, S.; Schummer, J.; and Vohra, R. V. 2007. On ascending
Vickrey auctions for heterogeneous objects. Journal of Economic
Theory 132(1):95–118.
Demange, G.; Gale, D.; and Sotomayor, M. 1986. Multi-item
auctions. Journal of Political Economy 94(4):863–872.
Lahaie, S. 2009. A kernel method for market clearing. In Proc.
21st International Joint Conference on Artificial Intelligence (IJ-
CAI), 208–213.
Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000. Towards a
universal test suite for combinatorial auction algorithms. In Proc.
second ACM Conference on Electronic Commerce (EC), 66–76.
Parkes, D. C., and Ungar, L. H. 2000. Iterative combinatorial
auctions: Theory and practice. In Proc. 17th National Conference
on Artificial Intelligence (AAAI), 74–81.

